Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential

Abstract.

We present a more general form of the Schrödinger equation in curved space by introducing the magnetic fields. Further, we solve the non-relativistic wave equation with the radial scalar power potential (RSPP) under the influence of magnetic and Aharonov-Bohm (AB) flux fields by using the curvilinear coordinates system in such space. With this requirement, the energy spectrum and the corresponding wave functions have been calculated by means of the series method. Our analytical results are compared with other results and found to be in a good agreement. Furthermore, the main thermodynamic functions, such as the free energy, the mean energy, the entropy, the specific heat, the persistent currents and the magnetization, have been calculated by using the characteristic function. Some plots of the numerical results of the thermodynamic quantities are shown. Finally, we discuss our results.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S. Flugge, Practical Quantum Mechanics (Springer-Verlag, Berlin, Heidelberg, New York, 1974)

  2. 2

    S.H. Dong, M. Lozada-Cassou, Phys. Lett. A 330, 168 (2004)

    ADS  Article  Google Scholar 

  3. 3

    M.C. Zhang, G.H. Sun, S.H. Dong, Phys. Lett. A 374, 704 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    C.S. Jia, Y. Li, Y. Sun, L.T. Sun, Phys. Lett. A 311, 115 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    L.Z. Yi, Y.F. Diao, J.Y. Liu, C.S. Jia, Phys. Lett. A 333, 212 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    O. Aydogdu, R. Sever, Ann. Phys. (NY) 325, 373 (2010)

    ADS  Article  Google Scholar 

  7. 7

    G. Chen, Phys. Lett. A 326, 55 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8

    A. Arda, R. Sever, Commun. Theor. Phys. 58, 27 (2012)

    ADS  Article  Google Scholar 

  9. 9

    S. Ortakaya, Chin. Phys. B 21, 070303 (2012)

    Article  Google Scholar 

  10. 10

    A. Ishkhanyan, EPL 115, 20002 (2016)

    ADS  Article  Google Scholar 

  11. 11

    M. Eshghi, H. Mehraban, S.M. Ikhdair, Acta Math. Appl. Sin. 31, 1131 (2015)

    Article  Google Scholar 

  12. 12

    M. Eshghi, H. Mehraban, J. Kor. Phys. Soc. 67, 1118 (2015)

    ADS  Article  Google Scholar 

  13. 13

    M. Eshghi, H. Mehraban, Chin. J. Phys. 50, 533 (2012)

    Google Scholar 

  14. 14

    M. Eshghi, H. Mehraban, J. Math. Phys. 57, 082105 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    M. Eshghi, H. Mehraban, C. R. Phys. 18, 47 (2017)

    ADS  Article  Google Scholar 

  16. 16

    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    S.V. Kryuchkov, E.I. Kukhar, Phys. B 445, 93 (2014)

    ADS  Article  Google Scholar 

  18. 18

    C. Weishbuch, B. Vinter, Quantum Semiconductor Heterostructure (Academic Press, New-York, 1993)

  19. 19

    C. Frankenberg, J.F. Meiring, M. Van Weele, U. Platt, T. Wagner, Science 308, 1010 (2005)

    ADS  Article  Google Scholar 

  20. 20

    A. Baura, M. Kumar Sen, B. Chandra Bag, Chem. Phys. 417, 30 (2013)

    ADS  Article  Google Scholar 

  21. 21

    H. Haken, H.C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory (Springer, Berlin, 1995)

  22. 22

    A. Arda, R. Sever, J. Math. Chem. 50, 971 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23

    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)

    ADS  Article  Google Scholar 

  24. 24

    Al.L. Efros, A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982)

    Google Scholar 

  25. 25

    X. Yao, A. Belyanin, J. Phys.: Condens. Matter. 25, 054203 (2013)

    ADS  Google Scholar 

  26. 26

    R. Khordad, Phys. B 406, 620 (2011)

    ADS  Article  Google Scholar 

  27. 27

    Vl.A. Margulis, E.E. Muryumin, E.A. Gaiduk, J. Opt. 16, 125203 (2014)

    ADS  Article  Google Scholar 

  28. 28

    W. Xie, S. Liang, Phys. B 406, 4657 (2011)

    ADS  Article  Google Scholar 

  29. 29

    R. Sever, C. Tezcan, M. Aktas, O. Yesiltas, J. Math. Chem. 43, 845 (2008)

    MathSciNet  Article  Google Scholar 

  30. 30

    V.A. Harutyunyan, E.M. Kazaryan, H.A. Kostanyan, H.A. Sarkisyan, Phys. E 36, 114 (2007)

    Article  Google Scholar 

  31. 31

    B.J. Falaye, G.-H. Sun, R. Silva-Ortigoza, S.H. Dong, Phys. Rev. E 93, 053201 (2016)

    ADS  Article  Google Scholar 

  32. 32

    N. Raigoza, A.L. Morales, C.A. Duque, Phys. B 363, 262 (2005)

    ADS  Article  Google Scholar 

  33. 33

    Y. Naim, J. Vahedi, R. Soltani, Opt. Quantum Electron. 47, 2947 (2015)

    Article  Google Scholar 

  34. 34

    M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E 22, 860 (2004)

    ADS  Article  Google Scholar 

  35. 35

    L.A. Falkovsky, J. Phys.: Conf. Ser. 129, 012004 (2008)

    Google Scholar 

  36. 36

    A. Ghoshal, Y.K. Ho, Phys. Rev. E 81, 016403 (2010)

    ADS  Article  Google Scholar 

  37. 37

    M.L. Glasser, N.H. March, L.M. Nieto, Phys. Lett. A 376, 1477 (2012)

    ADS  Article  Google Scholar 

  38. 38

    S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)

    ADS  Article  Google Scholar 

  39. 39

    V. Santos, R.V. Maluf, C.A.S. Almeida, arXiv:1401.8051v2 (2014)

  40. 40

    S. Hassanabadi, M. Ghominejad, Adv. High Energy Phys. 2014, 185169 (2014)

    Google Scholar 

  41. 41

    A. Boumali, H. Hassanabadi, Eur. Phys. J. Plus 128, 124 (2013)

    Article  Google Scholar 

  42. 42

    M.S. Reis, S. Soriano, Appl. Phys. Lett. 102, 112903 (2013)

    ADS  Article  Google Scholar 

  43. 43

    A. Boumali, Phys. Scr. 90, 045702 (2015)

    ADS  Article  Google Scholar 

  44. 44

    S.-H. Dong, M. Lozada-Cassou, J. Yu, F. Jiménez-Ángeles, A.L. Rivera, Int. J. Quantum Chem. 102, 366 (2007)

    ADS  Article  Google Scholar 

  45. 45

    S.-H. Dong, M. Cruz-Irisson, J. Math. Chem. 50, 881 (2012)

    MathSciNet  Article  Google Scholar 

  46. 46

    C.-S. Jia, L.-H. Zhang, C.-W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    ADS  Article  Google Scholar 

  47. 47

    I.C. Fonseca, K. Bakke, Proc. R. Soc. A 471, 20150362 (2015)

    ADS  Article  Google Scholar 

  48. 48

    A.B. Oliveira, K. Bakke, Proc. R. Soc. A 472, 20150858 (2016)

    ADS  Article  Google Scholar 

  49. 49

    K. Bakke, Ann. Phys. 241, 86 (2014)

    ADS  Article  Google Scholar 

  50. 50

    L.L. Vitoria, K. Bakke, Eur. Phys. J. Plus 131, 36 (2016)

    Article  Google Scholar 

  51. 51

    L.L. Vitoria, C. Furtado, K. Bakke, Ann. Phys. 370, 128 (2016)

    ADS  Article  Google Scholar 

  52. 52

    A. Ronveaux, Heun's Differential Equations (Oxford University Press, Oxford, 1995)

  53. 53

    M. Eshghi, H. Mehraban, S.M. Ikhdair, Eur. Phys. J. A 52, 201 (2016)

    ADS  Article  Google Scholar 

  54. 54

    S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282 (2015)

    ADS  Article  Google Scholar 

  55. 55

    Z. Sharifi, F. Tajic, M. Hamzavi, S.M. Ikhdair, Z. Naturf. A 70, 499 (2015)

    Article  Google Scholar 

  56. 56

    A.A. Stahlhofen, J. Phys. A: Math. Gen. 37, 10129 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  57. 57

    J. Karwowski, H.A. Witek, Theor. Chem. Acc. 133, 1494 (2014)

    Article  Google Scholar 

  58. 58

    J. Karwowski, J. Phys.: Conf. Ser. 104, 012033 (2008)

    Google Scholar 

  59. 59

    S.-H. Dong, Int. J. Theor. Phys. 40, 559 (2001)

    Article  Google Scholar 

  60. 60

    S.-H. Dong, G.-H. San, Found. Phys. Lett. 16, 357 (2003)

    MathSciNet  Article  Google Scholar 

  61. 61

    S.-H. Dong, Wave Eequations in Higher Dimensions (Springer, 2011)

  62. 62

    G.-H. Sun, S.-H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Int. J. Quantum Chem. 115, 891 (2015)

    Article  Google Scholar 

  63. 63

    S. Dong, Q. Fang, B.J. Falaye, G.-H. Sun, C. Yáñez-Márquez, S.-H. Dong, Mod. Phys. Lett. A 31, 1650017 (2016)

    ADS  Article  Google Scholar 

  64. 64

    S. Dong, G.-H. Sun, B.J. Falaye, S.-H. Dong, Eur. Phys. J. Plus 131, 176 (2016)

    Article  Google Scholar 

  65. 65

    M. Hamzavi, S.M. Ikhdair, B.J. Falaye, Ann. Phys. 341, 153 (2014)

    ADS  Article  Google Scholar 

  66. 66

    S.M. Ikhdair, M. Hamzavi, Phys. B 407, 4198 (2012)

    ADS  Article  Google Scholar 

  67. 67

    E. Grourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical Relativity (Springer-Verlag, 2012)

  68. 68

    I. Ahmadi Azar, Mathematical Methods in Physics, Vol. 1 (Imam Hossein University Press, Iran, 2005) (Persian Language)

  69. 69

    M. Bordag, N. Khusnutdinov, Class. Quantum Grav. 13, L41 (1996)

    ADS  Article  Google Scholar 

  70. 70

    S. Yu Slavyanov, W. Lay, Special Functions: A Unifield Theory Based in Singularities (Oxford University Press, New York, 2000)

  71. 71

    R.K. Patria, Statistical Mechanics, 1st ed. (Pergamon Press, Oxford, 1972)

  72. 72

    K.-C. Lee, arXiv:cond-mat/9411040v1 (1994)

  73. 73

    M. Ochi, Applied Probability & Stochastic Processes (John Wiley & Sons, 1992)

  74. 74

    G. Zitkovic, Lecture 8: Characteristic functions (2013) p. 5, www.ma.utexas.edu/users/gordanz/notes/characteristic.pdf

  75. 75

    J. Yi, P. Talkner, Phys. Rev. E 83, 041119 (2011)

    ADS  Article  Google Scholar 

  76. 76

    P. Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102(R) (2007)

    ADS  Article  Google Scholar 

  77. 77

    P. Talkner, P. Hanggi, J. Phys. A 40, F569 (2007)

    ADS  Article  Google Scholar 

  78. 78

    M.-A. Dariescu, C. Dariescu, J. Phys.: Condens. Matter 19, 256203 (2007)

    ADS  Google Scholar 

  79. 79

    M.-A. Dariescu, C. Dariescu, Chaos, Solitons Fractals 33, 776 (2007)

    ADS  Article  Google Scholar 

  80. 80

    N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

    ADS  Article  Google Scholar 

  81. 81

    X.T. Hu, L.H. Zhang, C.S. Jia, J. Mol. Spectrosc. 297, 21 (2014)

    ADS  Article  Google Scholar 

  82. 82

    J.Y. Liu, G.D. Zhang, C.S. Jia, Phys. Lett. A 377, 1444 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  83. 83

    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Eshghi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eshghi, M., Mehraban, H. Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential. Eur. Phys. J. Plus 132, 121 (2017). https://doi.org/10.1140/epjp/i2017-11379-x

Download citation