Advertisement

Modeling tangent hyperbolic nanoliquid flow with heat and mass flux conditions

  • T. Hayat
  • I. Ullah
  • A. Alsaedi
  • B. Ahmad
Regular Article

Abstract.

This attempt predicts the hydromagnetic flow of a tangent hyperbolic nanofluid originated by a non-linear impermeable stretching surface. The considered nanofluid model takes into account the Brownian diffusion and thermophoresis characteristics. An incompressible liquid is electrically conducted in the presence of a non-uniformly applied magnetic field. Heat and mass transfer phenomena posses flux conditions. Mathematical formulation is developed by utilizing the boundary layer approach. A system of ordinary differential equations is obtained by employing adequate variables. Convergence for obtained series solutions is checked and explicitly verified through tables and plots. Effects of numerous pertinent variables on velocity, temperature and concentration fields are addressed. Computations for surface drag coefficient, heat transfer rate and mass transfer rate are presented and inspected for the influence of involved variables. Temperature is found to enhance for a higher magnetic variable. Present and previous outcomes in limiting sense are also compared.

References

  1. 1.
    M.A. Abbas, Y.Q. Bai, M.M. Bhatti, M.M. Rashidi, Alex. Eng. J. 55, 653 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Naseer, M.Y. Malik, S. Nadeem, A. Rehman, Alex. Eng. J. 53, 747 (2014)CrossRefGoogle Scholar
  3. 3.
    S.A. Gaffar, V.R. Prasad, E.K. Reddy, O.A. Bég, Arab. J. Sci. Eng. 39, 8157 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Hayat, A. Shafiq, A. Alsaedi, J. Magn. & Magn. Mater. 405, 97 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    T. Hayat, S. Qayyum, A. Alsaedi, S.A. Shehzad, J. Mol. Liq. 223, 969 (2016)CrossRefGoogle Scholar
  6. 6.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of Non-Newtonian flows, FED 231/MD 66 (1995) pp. 99--105Google Scholar
  7. 7.
    J. Buongiorno, ASME J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  8. 8.
    R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007)CrossRefGoogle Scholar
  9. 9.
    K.L. Hsiao, Comput. Fluids 104, 1 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.V. Kuznetsov, D.A. Nield, Int. J. Thermal Sci. 77, 126 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Malvandi, D.D. Ganji, J. Magn. & Magn. Mater. 362, 172 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Gireesha, R.S.R. Gorla, B. Mahanthesh, J. Nanofluids 4, 474 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Ellahi, M. Hassan, A. Zeeshan, Int. J. Heat Mass Transfer 81, 449 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Turkyilmazoglu, Energy Convers. Manag. 114, 1 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Sheikholeslami, M.T. Mustafa, D.D. Ganji, Particuology 26, 108 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Hayat, I. Ullah, T. Muhammad, A. Alsaedi, J. Mol. Liq. 220, 1004 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, J. Mol. Liq. 215, 704 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Turkyilmazoglu, Comput. Fluids 71, 426 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz, M.T. Jamal-Abad, J. Magn. & Magn. Mater. 378, 128 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    C. Zhang, L. Zheng, X. Zhang, G. Chen, Appl. Math. Model 39, 165 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, J. Magn. & Magn. Mater. 396, 31 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 96, 525 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Vajravelu, Appl. Math. Comput. 124, 281 (2001)MathSciNetGoogle Scholar
  24. 24.
    R. Cortell, Phys. Lett. A 372, 631 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    P. Rana, R. Bhargava, Commun. Nonlinear Sci. Numer. Simulat. 17, 212 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Mukhopadhyay, Alex. Eng. J. 52, 563 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    T. Hayat, A. Aziz, T. Muhammad, B. Ahmad, J. Magn. & Magn. Mater. 408, 99 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    N.A. Yacob, A. Ishak, Chem. Eng. Res. Des. 89, 2291 (2011)CrossRefGoogle Scholar
  30. 30.
    I.C. Mandal, S. Mukhopadhyay, Ain Shams Eng. J. 4, 103 (2013)CrossRefGoogle Scholar
  31. 31.
    T. Hayat, I. Ullah, T. Muhammad, A. Alsaedi, S.A. Shehzad, Chin. Phys. B 25, 074701 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Hayat, Z. Hussain, A. Alsaedi, T. Muhammad, Neural. Comput. Appl. (2016) DOI:10.1007/s00521-016-2685-x
  33. 33.
    S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, 2003)Google Scholar
  34. 34.
    T. Hayat, R. Ellahi, P.D. Ariel, S. Asghar, Nonlinear Dyn. 45, 55 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer. Simulat. 17, 4097 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Abbasbandy, M.S. Hashemi, I. Hashim, Quaest. Math. 36, 93 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Hayat, A. Naseem, M. Farooq, A. Alsaedi, Eur. Phys. J. Plus 128, 158 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Qayyum, T. Hayat, M.S. Alhuthali, H.M. Malaikah, Chin. Phys. B 23, 054703 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, Comput. Fluids 108, 179 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Int. J. Heat Mass Transfer 102, 1123 (2016)CrossRefGoogle Scholar
  41. 41.
    T. Fang, J. Zhang, S. Yao, Commun. Nonlinear Sci. Numer. Simulat. 14, 3731 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.NAAM: Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations