Abstract.
In this paper, a new method based on Fractional order of Rational Jacobi (FRJ) functions is proposed that utilizes quasilinearization method to solve non-linear singular Thomas-Fermi equation on unbounded interval \([0,\infty)\). The equation is solved without domain truncation and variable changing. First, the quasilinearization method is used to convert the equation to the sequence of linear ordinary differential equations. Then, by using the FRJs collocation method the equations are solved. For the evaluation, comparison with some numerical solutions shows that the proposed solution is highly accurate.
This is a preview of subscription content, access via your institution.
References
K. Parand, M. Dehghan, A. Taghavi, Int. J. Numer. Methods Heat Flow 20, 728 (2010)
K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. Kazemnasab Haji, Commun. Nonlinear Sci. Numer. Simulat. 16, 1811 (2011)
D. Funaro, O. Kavian, Math. Comput. 57, 597 (1991)
B.Y. Guo, J. Shen, Numer. Math. 86, 635 (2000)
C. Christov, SIAM J. Appl. Math. 42, 1337 (1982)
J.P. Boyd, J. Comput. Phys. 69, 112 (1987)
J.P. Boyd, J. Comput. Phys. 70, 63 (1987)
F. Baharifard, S. Kazem, K. Parand, Int. J. Appl. Comput. Math. 2, 679 (2016)
K. Parand, M. Shahini, M. Dehghan, Commun. Nonlinear Sci. Numer. Simulat. 15, 360 (2010)
K. Parand, A. Taghavi, M. Shahini, Acta Phys. Pol. B 40, 1749 (2009)
B.Y. Guo, J. Math. Anal. Appl. 243, 373 (2000)
J.A. Rad, K. Parand, S. Abbasbandy, Commun. Nonlinear Sci. Numer. Simulat. 22, 1178 (2015)
J.A. Rad, K. Parand, S. Abbasbandy, Proc. Natl. Acad. Sci. India Sect. A 85, 337 (2015)
J.A. Rad, K. Parand, L.V. Ballestra, Appl. Math. Comput. 251, 363 (2015)
J.A. Rad, K. Parand, I. J. Comput. Math., DOI:10.1080/00207160.2016.1227434 (2016)
M. Delkhosh, M. Delkhosh, M. Jamali, Middle-East J. Sci. Res. 11, 974 (2012)
K. Parand, M. Delkhosh, Ric. Mat. 65, 307 (2016)
E. Fermi, Z. Phys. 48, 73 (1928)
B.J. Noye, M. Dehghan, Numer. Methods Part. Differ. Equ. 15, 521 (1999)
W. Bu, Y. Ting, Y. Wu, J. Yang, J. Comput. Phys. 293, 264 (2015)
H.J. Choi, J.R. Kweon, J. Comput. Appl. Math. 292, 342 (2016)
J.A. Rad, S. Kazem, K. Parand, Commun. Nonlinear Sci. Numer. Simulat. 19, 2559 (2014)
K. Parand, M. Hemami, Int. J. Appl. Comput. Math., DOI:10.1007/s40819-016-0161-z (2016)
J.A. Rad, K. Rashedi, K. Parand, H. Adibi, Eng. Comput., DOI:10.1007/s00366-016-0489-3 (2016)
J.A. Rad, S. Kazem, K. Parand, Commun. Nonlin. Sci. Numer. Simul. 19, 2559 (2014)
J.A. Rad, S. Kazem, K. Parand, Comput. Math. Appl. 64, 2049 (2012)
S. Kazem, J.A. Rad, K. Parand, Comput. Math. Appl. 64, 399 (2012)
K. Parand, M. Delkhosh, Afr. Mat., DOI:10.1007/s13370-016-0459-3 (2016)
K. Parand, M. Delkhosh, Gazi Uni. J. Sci. 29, 895 (2016)
A.H. Bhrawy, M.M. Alghamdi, T.M. Taha, Adv. Differ. Equ. 2012, 179 (2012)
A.H. Bhrawy, D. Baleanu, L.M. Assas, J. Vib. Control 20, 973 (2014)
R.M. Hafez, M.A. Abdelkawy, E.H. Doha, A.H. Bhrawy, Rom. Rep. Phys. 68, 112 (2016)
K. Parand, S.A. Hossayni, J.A. Rad, Appl. Math. Model. 40, 993 (2016)
I. Hashim, M.S.M. Noorani, M.R. Said Al-Hadidi, Math. Comput. Model. 43, 1404 (2006)
M. Tataria, M. Dehghana, M. Razzaghi, Math. Comput. Model. 45, 639 (2007)
J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)
H. Saeedi, F. Samimi, Int. J. Eng. Res. Appl. 2, 52 (2012)
M. Shaban, S. Kazem, J.A. Rad, Math. Comput. Model. 57, 1227 (2013)
F. Shakeri, M. Dehghan, Nonlinear Dyn. 51, 89 (2008)
M. Delkhosh, M. Delkhosh, J. Appl. Math. 2012, 180806 (2012)
J.H. He, X.H. Wu, Chaos, Solitons Fractals 30, 700 (2006)
K. Parand, J.A. Rad, J. King Saud Univ. Sci. 24, 1 (2012)
L.H. Thomas, Math. Proc. Camb. 23, 542 (1927)
J.C. Slater, H.M. Krutter, Phys. Rev. 47, 559 (1935)
R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)
B.J. Laurenzi, J. Math. Phys. 10, 2535 (1990)
A.J. MacLeod, Comput. Phys. Commun. 67, 389 (1992)
M. Al-zanaidi, C. Grossmann, IMA J. Numer. Anal. 16, 413 (1996)
A.-M. Wazwaz, Appl. Math. Comput. 105, 11 (1999)
V.B. Mandelzweig, F. Tabakinb, Comput. Phys. Commun. 141, 268 (2001)
J.I. Ramos, Comput. Phys. Commun. 158, 12 (2004)
H. Khan, H. Xu, Phys. Lett. A 365, 111 (2007)
A. El-Nahhas, Acta Phys. Pol. A 114, 913 (2008)
K. Parand, M. Shahini, Phys. Lett. A 373, 210 (2009)
A. Ebaid, J. Comput. Appl. Math. 235, 1914 (2011)
V. Marinca, N. Herisanu, Cent. Eur. J. Phys. 9, 891 (2011)
M. Oulne, Appl. Math. Comput. 218, 303 (2011)
S. Abbasbandy, C. Bervillier, Appl. Math. Comput. 218, 2178 (2011)
S. Zhu, H. Zhu, Q. Wu, Y. Khan, Numer. Algor. 59, 359 (2012)
J.P. Boyd, J. Comput. Appl. Math. 244, 90 (2013)
K. Parand, M. Dehghan, A. Pirkhedri, J. Comput. Appl. Math. 237, 244 (2013)
V. Marinca, R.D. Ene, Cent. Eur. J. Phys. 12, 503 (2014)
A. Kilicman, I. Hashimb, M. Tavassoli Kajani, M. Maleki, J. Comput. Appl. Math. 257, 79 (2014)
F. Bayatbabolghani, K. Parand, Int. J. Math. Comput. Sci. Eng. 8, 123 (2014)
P. Amore, J.P. Boyd, F.M. Fernandez, Appl. Math. Comput. 232, 929 (2014)
C. Liu, S. Zhu, J. Comput. Appl. Math. 282, 251 (2015)
U. Filobello-Nino, A. Perez-Sesma, J. Sanchez-Orea, C. Hernandez-Mejia, H. Vazquez-Leal, A. Diaz-Sanchez, J. Huerta-Chua, K. Boubaker, A. Sarmiento-Reyes, V.M. Jimenez-Fernandez, L.J. Morales-Mendoza, F.J. Gonzalez-Martinez, J. Cervantes-Perez, M. Gonzalez-Lee, J. Appl. Math. 2015, 405108 (2015)
K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, Eur. Phys. J. Plus 131, 228 (2016)
K. Parand, A. Ghaderi, H. Yousefi, M. Delkhosh, Electron. J. Diff. Equ. 2016, 331 (2016)
K. Parand, M. Delkhosh, J. Comput. Appl. Math. 317, 624 (2017)
F. Costabile, A. Napoli, J. Comput. Appl. Math. 292, 329 (2016)
F. Fakhar-Izadi, M. Dehghan, Math. Methods Appl. Sci. 38, 478 (2015)
E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, R.M. Hafez, Cent. Eur. J. Phys. 12, 111 (2014)
A.H. Bhrawy, App. Math. Comput. 247, 30 (2014)
E.H. Doha, A.H. Bhrawy, D. Baleanu, R.M. Hafez, Appl. Numer. Math. 77, 43 (2014)
Y. Chen, X. Li, T. Tang, J. Comput. Math. 31, 47 (2013)
E.H. Doha, A.H. Bhrawy, R.M. Hafez, Robert A. Van Gorder, Nonlinear Anal. Model. Control. 19, 1 (2014)
B.Y. Guo, Y.G. Yi, J. Sci. Comput. 43, 201 (2010)
Y.G. Yi, B.Y. Guo, Adv. Comput. Math. 37, 1 (2012)
D. Tchiotsop, D. Wolf, V. Louis-Dorr, R. Husson, Conf. IEEE EMBS, DOI:10.1109/IEMBS.2007.4352678 (2007)
A.H. Bhrawy, M.A. Zaky, Appl. Math. Model. 40, 832 (2016)
A.H. Bhrawy, M. Zaky, Math. Methods Appl. Sci. 39, 1765 (2016)
E.H. Doha, A.H. Bhrawy, Numer. Methods. Partial. Differ. Equ. 25, 712 (2009)
K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, SeMA J., DOI:10.1007/s40324-016-0103-z (2017)
E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, Open Phys. 12, 637 (2014)
A.H. Bhrawy, M. Tharwat, M. Alghamdi, Bull. Malays. Math. Sci. Soc. 37, 983 (2014)
E.H. Doha, D.Baleanu, A.H. Bhrawy, M.A. Abdelkawy, Abstr. Appl. Anal. 2013, 760542 (2013)
R. Kalaba, R.E. Bellman, R.E. Kalaba, J. Math. Mech. 8, 519 (1959)
V. Lakshmikantham, A.S. Vatsala, Generalized quasilinearization for nonlinear problems (Springer Science, 2013)
R. Krivec, V.B. Mandelzweig, Comput. Phys. Commun. 138, 69 (2001)
R. Krivec, V.B. Mandelzweig, Comput. Phys. Commun. 179, 865 (2008)
E.Z. Liverts, R. Krivec, V.B. Mandelzweig, Phys. Scr. 77, 045004 (2008)
E.B. Baker, Quart. Appl. Math. 36, 630 (1930)
N.A. Zaitsev, I.V. Matyushkin, D.V. Shamonov, Russ. Microelectr. 33, 303 (2004)
M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer. Simulat. 17, 4097 (2012)
Y. Zhao, Z. Lin, Z. Liu, S. Liao, Appl. Math. Comput. 218, 8363 (2012)
R. Jovanovic, S. Kais, F.H. Alharbi, J. Appl. Math. 2014, 168568 (2014)
V. Bush, S.H. Caldwell, Phys. Rev. 38, 1898 (1931)
S. Liao, Appl. Math. Comput. 144, 495 (2003)
S. Esposito, Am. J. Phys. 70, 852 (2002)
L.N. Epele, H. Fanchiotti, C.A.G. Canal, J.A. Ponciano, Phys. Rev. A 60, 280 (1999)
C. Miranda, Mat. Nat. 5, 285 (1934)
B. Yao, Appl. Math. Comput. 203, 396 (2008)
S. Kobayashi, T. Matsukuma, S. Nagi, K. Umeda, J. Phys. Soc. Jpn. 10, 759 (1955)
J.C. Mason, Proc. Phys. Soc. 84, 357 (1964)
F.M. Fernandez, Appl. Math. Comput. 217, 6433 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Parand, K., Mazaheri, P., Yousefi, H. et al. Fractional order of rational Jacobi functions for solving the non-linear singular Thomas-Fermi equation. Eur. Phys. J. Plus 132, 77 (2017). https://doi.org/10.1140/epjp/i2017-11351-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2017-11351-x