Advertisement

Numerical simulation of the temperature field in magnetic hyperthermia with Fe-Cr-Nb-B magnetic particles

  • Iordana AstefanoaeiEmail author
  • Alexandru Stancu
  • Horia Chiriac
Regular Article
  • 54 Downloads

Abstract.

This paper analyzes the optimum dosage of the Fe-Cr-Nb-B particles used in magnetic hyperthermia to obtain a uniform therapeutic temperature field within a large malignant tissue. The ferrofluid injection was modeled for two configurations of the injection sites symmetrically distributed within tumor volume. The particles transport within tissues during the injection process was also considered. The spatial distributions of the particles as a result of the injection of the ferrofluid volume in these injection sites configurations were studied. The temperature field developed within tissues in the presence of the magnetic field was computed using a numerical model developed via Comsol Multiphysics. The volumetric flow rate of the ferrofluid volume injected within the tumor influences strongly the temperature within the tumor. Symmetric arrangement of the injection sites for the ferrofluid insertion within tissues improves the spatial distribution of the temperature within the tumor. Ferrofluid injection in four injection sites with smaller volumetric flow rate was the best uniform therapeutic temperature field focused within the tumor volume we found in our simulations. Also as a plus, a smaller quantity of Fe-Cr-Nb-B particles is needed in this hypothetical therapeutic case.

References

  1. 1.
    R.W.Y. Habash, R. Bansal, D. Krewski, H.T. Alhafid, Crit. Rev. Biomed. Eng. 34, 491 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    N. Lupu, H. Chiriac, S. Corodeanu, G. Ababei, IEEE Trans. Magn. 47, 3791 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    H. Chiriac, N. Lupu, M. Lostun, G. Ababei, M. Grigoras, C. Danceanu, J. Appl. Phys. 115, 17B520 (2014)CrossRefGoogle Scholar
  5. 5.
    I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, J. Appl. Phys. 115, 17B531 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Chiriac, T. Petreus, E. Carasevici, L. Labusca, D.D. Herea, C. Danceanu, N. Lupu, J. Magn. & Magn. Mater. 380, 13 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, IEEE Trans. Magn. 50, 11 (2014)CrossRefGoogle Scholar
  8. 8.
    I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, IEEE Trans. Magn. 50, 7 (2016)Google Scholar
  9. 9.
    M. Lahonian, A.A. Golneshan, IEEE Trans. Nanobiosci. 10, 4 (2011)CrossRefGoogle Scholar
  10. 10.
    Kambiz Vafai (Editor), Handbook of Porous Media, second edition (CRC, Taylor & Francis, 2005)Google Scholar
  11. 11.
    COMSOL Multiphysics, Reference Manual, version 5.0Google Scholar
  12. 12.
    C.N. Satterfield, Mass Transport in Heterogeneous Catalysis (MIT Press, Cambridge MA, 1970)Google Scholar
  13. 13.
    S. Ramanujan, A. Pluen, T.D. McKee, E.B. Brown, Y. Boucher, R.K. Jain, Biophys. J. 83, 3 (2002)CrossRefGoogle Scholar
  14. 14.
    N. Tufenkji, M. Elimelech, Environ. Sci. Technol. 38, 529 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R. Rajagopalan, C. Tien, AIChE J. 22, 3 (1976)CrossRefGoogle Scholar
  16. 16.
    Chi Tien, Principles of Filtration (Elsevier, 2012)Google Scholar
  17. 17.
    R.W. Chantrell, J. Popplewell, S.W. Charles, IEEE Trans. Magn. Mag. 16, 975 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    M. Pavel, G. Gradinaru, A. Stancu, IEEE Trans. Magn. 44, 11 (2008)CrossRefGoogle Scholar
  19. 19.
    You - Im Chang, Hsum -Chih Chan, AIChE J. 54, 5 (2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Iordana Astefanoaei
    • 1
    Email author
  • Alexandru Stancu
    • 1
  • Horia Chiriac
    • 2
  1. 1.“Alexandru Ioan Cuza” UniversityDepartment of Physics & CARPATHIasiRomania
  2. 2.National Institute of Research & Development for Technical PhysicsIaşiRomania

Personalised recommendations