Skip to main content
Log in

On the solutions of fractional order of evolution equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204 (Elsevier, Amsterdam, 2006)

  2. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993)

  3. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego-New York-London, 1999)

  4. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Langhorne, 1993)

  5. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  6. Y. Zhang, M.M. Meerschaert, B. Baeumer, Phys. Rev. E 78, 036705 (2008)

    Article  ADS  Google Scholar 

  7. W. Chen, H.G. Sun, Mod. Phys. Lett. B 23, 449 (2009)

    Article  ADS  Google Scholar 

  8. Y. He, S. Burov, R. Metzler, E. Barkai, Phys. Rev. Lett. 101, 058101 (2008)

    Article  ADS  Google Scholar 

  9. A.J. Turski, B. Atamaniuk, E. Turska, J. Tech. Phys. 44, 193 (2003)

    Google Scholar 

  10. A.M.A. El-Sayed, Int. J. Theor. Phys. 35, 311 (1996)

    Article  Google Scholar 

  11. A.M.A. El-Sayed, M.A.E. Aly, Korean J. Comput. Appl. Math. 9, 525 (2002)

    Google Scholar 

  12. F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)

    MathSciNet  Google Scholar 

  13. F. Mainardi, Appl. Math. Lett. 9, 23 (1996)

    Article  MathSciNet  Google Scholar 

  14. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in Fractal and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wein and New York, 1997) pp. 291--348, revised version 2001

  15. R. Gorenflo, F. Mainardi, Fract. Calc. Appl. Anal. 1, 167 (1998)

    MathSciNet  Google Scholar 

  16. W. Chen, S. Holm, Phys. Rev. 9, 214503 (2003)

    Google Scholar 

  17. S.D. Eidelman, A.N. Kochubei, J. Differ. Equ. 199, 211 (2004)

    Article  ADS  Google Scholar 

  18. A. Engler, Differ. Integral Equ. 10, 815 (1997)

    Google Scholar 

  19. Y. Fujita, Osaka J. Math. 27, 309 (1990)

    Google Scholar 

  20. Y. Fujita, Osaka J. Math. 27, 797 (1990)

    Google Scholar 

  21. R. Gorenflo, Yu. Luchko, F. Mainardi, Fract. Calc. Appl. Anal. 2, 383 (1992)

    Google Scholar 

  22. R. Gorenflo, F. Mainardi, Arch. Mech. 50, 377 (1998)

    Google Scholar 

  23. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in Waves and Stability in Continuous Media, edited by S. Rionero, T. Ruggeri (World Scientific, Singapore, 1994) pp. 246--251

  24. F. Mainardi, M. Tomirotti, On a special function arising in the time fractional diffusion-wave equation, in Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, V. Kiryakova (Science Culture Technology, Singapore, 1995) pp. 171--183

  25. A. Saichev, G. Zaslavsky, Chaos 7, 753 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989)

    Article  ADS  Google Scholar 

  27. W. Wyss, J. Math. Phys. 27, 2782 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Caputo, Rend Fis. Acc. Lincei (Ser.9) 7, 243 (1996)

    Article  Google Scholar 

  29. M. Giona, H.E. Roman, Chem. Eng. J. 49, 1 (1992)

    Article  Google Scholar 

  30. R. Hilfer, Fractals 3, 211 (1995)

    MathSciNet  Google Scholar 

  31. F. Mainardi, M. Tomirotti, Ann. Geofis. 40, 1311 (1997)

    Google Scholar 

  32. D. Matignon, G. Montseny (Editors), Fractional Differential Systems: Models, Methods and Applications, in Proceedings of the Colloquium FDS'98, ESAIM, Vol. 5 (EDP Sciences, 1998)

  33. R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Physica A 211, 13 (1994)

    Article  ADS  Google Scholar 

  34. R.R. Nigmatullin, Phys. Status. Solid. B 133, 425 (1986)

    Article  ADS  Google Scholar 

  35. A.A. Kilbas, T. Pierantozzi, J.J. Trujillo, L. Vázquez, J. Phys. A: Math. Gen. 37, 3271 (2004)

    Article  ADS  Google Scholar 

  36. H. Berens, U. Westphal, Acta Sci. Math. (Szeged) 29, 93 (1968)

    MathSciNet  Google Scholar 

  37. M. Caputo, M. Fabricio, Prog. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  38. J.F. Gómez-Aguilar, T. Córdova-Fraga, J.E. Escalante-Martínez, C. Calderón-Ramón, R.F. Escobar-Jiménez, Rev. Mex. Fis 62, 144 (2016)

    Google Scholar 

  39. J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Ordua, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Atangana, B.S.T. Alkahtani, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  41. J. Lozada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  42. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vols. 1, 3 (McGraw-Hill Book Corp., New York, 1953)

  43. N. Heymans, I. Podlubny, Rheol. Acta 45, 765 (2006)

    Article  Google Scholar 

  44. M. Moshrefi-Torbati, J.K. Hammond, J. Franklin Inst. 335, 1077 (1998)

    Article  Google Scholar 

  45. V.S. Vladimirov, Methods of the Theory of Generalized Functions (CRC Press, 2002)

  46. N. Al-Salti, E. Karimov, S. Kerbal, Boundary-value problem for fractional heat equation involving Caputo-Fabrizio derivative, arXiv:1603.09471

  47. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics (Springer-Verlag, Berlin, Heidelberg, 2014)

  48. L. Vázquez, J. Comput. Math. 21, 491 (2003)

    Google Scholar 

  49. L. Vázquez, R.V. Mendes, Appl. Math. Comput. 141, 125 (2003)

    MathSciNet  Google Scholar 

  50. T. Pierantozzi, L. Vázquez, J. Math. Phys. 46, 113512 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Delgado, V.F., Taneco-Hernández, M.A. & Gómez-Aguilar, J.F. On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132, 47 (2017). https://doi.org/10.1140/epjp/i2017-11341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11341-0

Navigation