Abstract.
In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.
Similar content being viewed by others
References
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204 (Elsevier, Amsterdam, 2006)
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993)
I. Podlubny, Fractional Differential Equations (Academic Press, San Diego-New York-London, 1999)
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Langhorne, 1993)
R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)
Y. Zhang, M.M. Meerschaert, B. Baeumer, Phys. Rev. E 78, 036705 (2008)
W. Chen, H.G. Sun, Mod. Phys. Lett. B 23, 449 (2009)
Y. He, S. Burov, R. Metzler, E. Barkai, Phys. Rev. Lett. 101, 058101 (2008)
A.J. Turski, B. Atamaniuk, E. Turska, J. Tech. Phys. 44, 193 (2003)
A.M.A. El-Sayed, Int. J. Theor. Phys. 35, 311 (1996)
A.M.A. El-Sayed, M.A.E. Aly, Korean J. Comput. Appl. Math. 9, 525 (2002)
F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)
F. Mainardi, Appl. Math. Lett. 9, 23 (1996)
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in Fractal and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wein and New York, 1997) pp. 291--348, revised version 2001
R. Gorenflo, F. Mainardi, Fract. Calc. Appl. Anal. 1, 167 (1998)
W. Chen, S. Holm, Phys. Rev. 9, 214503 (2003)
S.D. Eidelman, A.N. Kochubei, J. Differ. Equ. 199, 211 (2004)
A. Engler, Differ. Integral Equ. 10, 815 (1997)
Y. Fujita, Osaka J. Math. 27, 309 (1990)
Y. Fujita, Osaka J. Math. 27, 797 (1990)
R. Gorenflo, Yu. Luchko, F. Mainardi, Fract. Calc. Appl. Anal. 2, 383 (1992)
R. Gorenflo, F. Mainardi, Arch. Mech. 50, 377 (1998)
F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in Waves and Stability in Continuous Media, edited by S. Rionero, T. Ruggeri (World Scientific, Singapore, 1994) pp. 246--251
F. Mainardi, M. Tomirotti, On a special function arising in the time fractional diffusion-wave equation, in Transform Methods and Special Functions, Sofia 1994, edited by P. Rusev, I. Dimovski, V. Kiryakova (Science Culture Technology, Singapore, 1995) pp. 171--183
A. Saichev, G. Zaslavsky, Chaos 7, 753 (1997)
W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989)
W. Wyss, J. Math. Phys. 27, 2782 (1986)
M. Caputo, Rend Fis. Acc. Lincei (Ser.9) 7, 243 (1996)
M. Giona, H.E. Roman, Chem. Eng. J. 49, 1 (1992)
R. Hilfer, Fractals 3, 211 (1995)
F. Mainardi, M. Tomirotti, Ann. Geofis. 40, 1311 (1997)
D. Matignon, G. Montseny (Editors), Fractional Differential Systems: Models, Methods and Applications, in Proceedings of the Colloquium FDS'98, ESAIM, Vol. 5 (EDP Sciences, 1998)
R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Physica A 211, 13 (1994)
R.R. Nigmatullin, Phys. Status. Solid. B 133, 425 (1986)
A.A. Kilbas, T. Pierantozzi, J.J. Trujillo, L. Vázquez, J. Phys. A: Math. Gen. 37, 3271 (2004)
H. Berens, U. Westphal, Acta Sci. Math. (Szeged) 29, 93 (1968)
M. Caputo, M. Fabricio, Prog. Fract. Differ. Appl. 1, 73 (2015)
J.F. Gómez-Aguilar, T. Córdova-Fraga, J.E. Escalante-Martínez, C. Calderón-Ramón, R.F. Escobar-Jiménez, Rev. Mex. Fis 62, 144 (2016)
J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Ordua, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)
A. Atangana, B.S.T. Alkahtani, Adv. Mech. Eng. 7, 1 (2015)
J. Lozada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)
A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vols. 1, 3 (McGraw-Hill Book Corp., New York, 1953)
N. Heymans, I. Podlubny, Rheol. Acta 45, 765 (2006)
M. Moshrefi-Torbati, J.K. Hammond, J. Franklin Inst. 335, 1077 (1998)
V.S. Vladimirov, Methods of the Theory of Generalized Functions (CRC Press, 2002)
N. Al-Salti, E. Karimov, S. Kerbal, Boundary-value problem for fractional heat equation involving Caputo-Fabrizio derivative, arXiv:1603.09471
R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics (Springer-Verlag, Berlin, Heidelberg, 2014)
L. Vázquez, J. Comput. Math. 21, 491 (2003)
L. Vázquez, R.V. Mendes, Appl. Math. Comput. 141, 125 (2003)
T. Pierantozzi, L. Vázquez, J. Math. Phys. 46, 113512 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morales-Delgado, V.F., Taneco-Hernández, M.A. & Gómez-Aguilar, J.F. On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 132, 47 (2017). https://doi.org/10.1140/epjp/i2017-11341-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2017-11341-0