Advertisement

Quantum Yang-Mills field theory

Regular Article

Abstract.

We show that the Dyson-Schwinger set of equations for the Yang-Mills theory can be exactly solved till the two-point function. This is obtained given a set of nonlinear waves solving the classical equations of motion. Translation invariance is maintained by the proper choice of the solution of the equation for the two-point function as devised by Coleman. The computation of the Dyson-Schwinger equations is performed in the same way as devised by Bender, Milton and Savage providing a set of partial differential equations whose proof of existence of the solutions is standard. So, the correlation functions of the theory could be proved to exist and the two-point function manifests a mass gap.

References

  1. 1.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    A.N. Vasilev, A.K. Kazanskii, Y.M. Pismak, Teor. Mat. Fiz. 19, 186 (1974)Google Scholar
  3. 3.
    J. Goldstone, R. Jackiw, Phys. Rev. D 11, 1486 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    E. Tomboulis, Phys. Rev. D 12, 1678 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    A. Klein, F. Krejs, Phys. Rev. D 12, 3112 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    L. Jacobs, Phys. Rev. D 13, 2278 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    T. Banks, S. Raby, Phys. Rev. D 14, 2182 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    E.J. Weinberg, Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics (Cambridge University Press, Cambridge, 2012)Google Scholar
  9. 9.
    F.J. Dyson, Phys. Rev. 75, 1736 (1949)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 37, 452 (1951)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 37, 455 (1951)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mandelstam, Phys. Rev. D 20, 3223 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    D. Atkinson, J.K. Drohm, P.W. Johnson, K. Stam, J. Math. Phys. 22, 2704 (1981)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Atkinson, P.W. Johnson, K. Stam, J. Math. Phys. 23, 1917 (1982)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    N. Brown, M.R. Pennington, Phys. Rev. D 39, 2723 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    L. von Smekal, A. Hauck, R. Alkofer, Ann. Phys. 267, 1 (1998) 269ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Bender, K.A. Milton, V.M. Savage, Phys. Rev. D 62, 085001 (2000) hep-th/9907045ADSCrossRefGoogle Scholar
  18. 18.
    M. Frasca, J. Nonlinear Math. Phys. 18, 291 (2011) arXiv:0907.4053 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Frasca, arXiv:1409.2351 [math-ph]
  20. 20.
    S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985) p. 192Google Scholar
  21. 21.
    J.A. Nogueira, P.L. Barbieri, Braz. J. Phys. 32, 798 (2002) hep-th/0108019ADSCrossRefGoogle Scholar
  22. 22.
    A.N. Sissakian, O.Y. Shevchenko, V.N. Samoilov, Phys. Rev. D 69, 061701 (2004) hep-th/0406048ADSCrossRefGoogle Scholar
  23. 23.
    F.N. Fagundes, R.O. Francisco, B.B. Dilem, J.A. Nogueira, Commun. Theor. Phys. 54, 1071 (2010) arXiv:1208.4378 [hep-th]ADSCrossRefGoogle Scholar
  24. 24.
    F.N. Fagundes, T.L. Antonacci Oakes, B.B. Dilem, J.A. Nogueira, Int. J. Mod. Phys. A 25, 1389 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    P. Gonzalez, V. Mathieu, V. Vento, Phys. Rev. D 84, 114008 (2011) arXiv:1108.2347 [hep-ph]ADSCrossRefGoogle Scholar
  26. 26.
    V. Vento, Eur. Phys. J. A 49, 71 (2013) arXiv:1205.2002 [hep-ph]ADSCrossRefGoogle Scholar
  27. 27.
    A. Deur, arXiv:1611.05515 [hep-ph]
  28. 28.
    C.M. Bender, F. Cooper, L.M. Simmons, Phys. Rev. D 39, 2343 (1989)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Z. Guralnik, Proceedings of the Workshop on Quantum Chromodynamics: Collisions, Confinement and Chaos: The American University of Paris, 3-8 June, 1996 (World Scientific, Singapore, 1997) pp. 375--383, hep-th/9608165Google Scholar
  30. 30.
    M. Frasca, Eur. Phys. J. C 74, 2929 (2014) arXiv:1306.6530 [hep-ph]ADSCrossRefGoogle Scholar
  31. 31.
    M. Frasca, Phys. Lett. B 670, 73 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    M. Frasca, Mod. Phys. Lett. A 24, 2425 (2009) arXiv:0903.2357 [math-ph]ADSCrossRefGoogle Scholar
  33. 33.
    A.V. Smilga, Lectures on Quantum Chromodynamics (World Scientific, Singapore, 2001)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

Personalised recommendations