Alternate current conductivity in BSb films prepared by PLD technique: Electron transport processes in low-temperature range (10-275 K)

  • Shirsendu Das
  • Ritamay Bhunia
  • Shamima Hussain
  • Radhaballabh Bhar
  • Arun Kumar Pal
Regular Article
  • 47 Downloads

Abstract.

This study is focused on the measurement of alternate current (a.c.) electrical conductivity of BSb films, deposited on fluorine-doped tin oxide (FTO)-coated glass substrates at 673K by the pulsed laser deposition (PLD) technique. The frequency-dependent a.c. conductivity is measured as a function of temperature (10-275K) and frequency (100Hz-100kHz). The transport processes governing the electrical conduction processes in this material are analyzed critically. It is observed from FESEM micrograph that the film is composed of small discrete grain with sizes varying in the range 6-12nm. It is interesting to notice from \( \ln\sigma_{\rm ac}\) versus 1000/T plot that there are three distinct zones: i) Semiconductor zone at high temperature from 275 to 150K, ii) Insulator zone at low temperature from 70 to 10K and iii) an abrupt change of the \( \ln\sigma_{\rm ac}\) versus 1000/T plot at ∼ 75 indicating MIS transition occurring in this BSb film. We found that the activation energy for the BSb films in the lower-temperature range was quite low ∼ 6 to 41neV, while that in the higher-temperature range was 20 to 50meV.

References

  1. 1.
    M. Ferhaty, B. Bouhafsz, A. Zaouiz, H. Aourag, J. Phys.: Condens. Matter 10, 7995 (1998)ADSGoogle Scholar
  2. 2.
    A. Zaoui, F.E.H. Hassan, J. Phys.:Condens. Matter. 13, 253 (2001)ADSGoogle Scholar
  3. 3.
    Y. Yao, D. König, M. Green, Sol. Energy Mater. Sol. Cells 111, 123 (2013)CrossRefGoogle Scholar
  4. 4.
    D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles, R. Patterson, L.M. Huang, M.A. Green, Physica E 42, 2862 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S. Das, R. Bhunia, S. Hussain, R. Bhar, B.R. Chakraborty, A.K. Pal, Appl. Surf. Sci. 353, 439 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Kumashiro, K. Nakamura, K. Sato, M. Ohtsuka, Y. Ohishi, M. Nakano, Y. Doi, J. Solid State Chem. 177, 533 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S. Dalui, S.N. Das, S. Hussain, D. Paramanik, S. Verma, A.K. Pal, J. Cryst. Growth 305, 149 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T. Moscicki, Int. J. Opt. 2016, 5438721 (2016)CrossRefGoogle Scholar
  9. 9.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  10. 10.
    T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 101, 025901 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Godet, J.P. Kleider, A.S. Gudovskikh, Diam. Relat. Mater. 16, 1799 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J. Han, M. Shen, W. Cao, A. Senos, P.Q. Mantos, Appl. Phys. Lett. 82, 67 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    A.G. Hunt, Philos. Mag. B 81, 875 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    S. Abboudy, K. Alfaramawi, L. Abulnasr, Mod. Phys. Lett. B 28, 1450002 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    H. Böttger, V.V. Bryksin, Hopping Conduction in Solids (VCH Publishers, Berlin, 1985)Google Scholar
  17. 17.
    A.L. Efros, Philos. Mag. B 43, 829 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    A.R. James, C.H. Prakash, G. Prasad, J. Phys. D: Appl. Phys. 39, 1635 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Barik, R.N.P. Choudhary, A.K. Singh, Adv. Mater. Lett. 2, 419 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Krichen, M. Megdiche, M. Gargouri, K. Guidara, Indian J. Phys. 88, 1051 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T.N. Koltunowicz, P. Zukowski, O. Boiko, A. Saad, J.A. Fedotova, A.K. Fedotov, A.V. Larkin, J. Kasiuk, J. Electron. Mater. 44, 2260 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    K. Funke, Prog. Solid St. Chem. 22, 111 (1993)CrossRefGoogle Scholar
  24. 24.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  25. 25.
    S. Sumi, P.P. Rao, M. Deepa, P. Koshy, J. Appl. Phys. 108, 063718 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Pollak, Philos. Mag. B 65, 657 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    A.G. Zabrodskii, A.G. Andreev, S.V. Egorov, Phys. Status Solidi B 205, 61 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    A.G. Zabrodskii, Philos. Mag. B 81, 1131 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    S.R. Elliott, Philos. Mag. 36, 1291 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shirsendu Das
    • 1
  • Ritamay Bhunia
    • 1
  • Shamima Hussain
    • 1
    • 2
  • Radhaballabh Bhar
    • 1
  • Arun Kumar Pal
    • 1
  1. 1.Department of Instrumentation ScienceJadavpur UniversityKolkataIndia
  2. 2.UGC-DAE CSR, Kalpakkam NodeKokilameduIndia

Personalised recommendations