Skip to main content
Log in

Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Based on the Adomian decomposition method (ADM), the numerical solution of a fractional-order 5-D hyperchaotic system with four wings is investigated. Dynamics of the system are analyzed by means of phase diagram, bifurcation diagram, Lyapunov exponents spectrum and chaos diagram. The method of one-dimensional linear path through the multidimensional parameter space is proposed to observe the evolution law of the system dynamics with parameters varying. The results illustrate that the system has abundant dynamical behaviors. Both the system order and parameters can be taken as bifurcation parameters. The phenomenon of multiple attractors is found, which means that some attractors are generated simultaneously from different initial values. The spectral entropy (SE) algorithm is applied to estimate the fractional-order system complexity, and we found that the complexity decreases with the increasing of system order. In order to verify the reliability of numerical solution, the fractional-order 5-D system with four wings is implemented on a DSP platform. The phase portraits of fractional-order system generated on DSP agree well with those obtained by computer simulations. It is shown that the fractional-order hyperchaotic system is a potential model for application in the field of chaotic secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. 16, 1140 (2011)

    Article  Google Scholar 

  2. L.D. Zhao, J.B. Hu, J.A. Fang, Nonlinear Dyn. 70, 475 (2012)

    Article  MathSciNet  Google Scholar 

  3. J.G. Lu, Phys. Lett. A 354, 305 (2006)

    Article  ADS  Google Scholar 

  4. B.S.T. Alkahtani, Chaos Solitons Fractals 89, 547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. H.Y. Jia, Z.Q. Chen, G.Y. Qi, IEEE T. Circuits-I 61, 845 (2014)

    Article  Google Scholar 

  6. D. Cafagna, G. Grassi, Int. J. Bifurc. Chaos 18, 1845 (2008)

    Article  Google Scholar 

  7. H.H. Sun, A.A. Abdelwahab, B. Onaral, IEEE Trans. Auto. Cont. 29, 441 (1984)

    Article  Google Scholar 

  8. C.G. Li, G.R. Chen, Physica A 341, 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Charef, H.H. Sun, Y.Y. Tsao, IEEE Trans. Auto. Contr. 37, 1465 (1992)

    Article  Google Scholar 

  10. K. Diethelm, Electron. Trans. Numer. Anal. 5, 1 (1997)

    MathSciNet  Google Scholar 

  11. G. Adomian, J. Math. Anal. Appl. 102, 420 (1884)

    Article  Google Scholar 

  12. Y.X. Xu et al., Eur. Phys. J. Plus 131, 186 (2016)

    Article  Google Scholar 

  13. N. Khodabakhshi, S.M. Vaezpour, D. Baleanu, Fract. Calc. Appl. Anal. 17, 382 (2014)

    Article  MathSciNet  Google Scholar 

  14. V. Daftardar-Gejji, H. Jafari, J. Math. Anal. Appl. 301, 508 (2005)

    Article  Google Scholar 

  15. N. Bildik, A. Konuralp, Int. J. Nonlinear Sci. 7, 65 (2013)

    Google Scholar 

  16. J.H. Ma, W.B. Ren, Int. J. Bifurc. Chaos 26, 1650181 (2016)

    Article  Google Scholar 

  17. J.C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, New York, 2003) pp. 431--433

  18. O.E. Rössler, Phys. Lett. A 72, 155 (1979)

    Article  Google Scholar 

  19. X. Wang, G. Chen, Commun. Nonlinear Sci. 17, 1264 (2012)

    Article  Google Scholar 

  20. S. Dadras, H.R. Momeni, G. Qi et al., Nonlinear Dyn. 67, 1161 (2012)

    Article  MathSciNet  Google Scholar 

  21. S.B. He, K.H. Sun, S. Banerjee, Entropy 17, 8299 (2015)

    Article  ADS  Google Scholar 

  22. D. Cafagna, G. Grassi, Int. J. Bifurc. Chaos. 19, 339 (2009)

    Article  Google Scholar 

  23. A. Zarei, Nonlinear Dyn. 81, 585 (2015)

    Article  MathSciNet  Google Scholar 

  24. H.A. Larrondo, C.M. González, M.T. Martín et al., Physica A 356, 133 (2005)

    Article  ADS  Google Scholar 

  25. M. Borowiec et al., Eur. Phys. J. Plus 129, 211 (2014)

    Article  Google Scholar 

  26. S.B. He et al., Eur. Phys. J. Plus 131, 254 (2016)

    Article  Google Scholar 

  27. S.T. Kingni et al., Eur. Phys. J. Plus 129, 76 (2014)

    Article  Google Scholar 

  28. R. Gorenflo, F. Mainardi, Fractal and Fractional Calculusin Continuum Mechanics (Springer-Verlag, Wien, 1997) pp. 223--276

  29. H.F. Von Bremen, F.E. Udwadia, W. Proskurowski, Physica D 101, 1 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, J. Math. Anal. Appl. 325, 542 (2007)

    Article  Google Scholar 

  31. D. Matignon, Comput. Eng. Syst. Appl. 2, 963 (1996)

    Google Scholar 

  32. H.H. Wang, K.H. Sun, S.B. He, Phys. Scr. 90, 015206 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, K., He, S. et al. Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings. Eur. Phys. J. Plus 132, 31 (2017). https://doi.org/10.1140/epjp/i2017-11310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11310-7

Navigation