Abstract.
Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.
Similar content being viewed by others
References
E. Sousa, C. Li, Appl. Numer. Math. 90, 22 (2015)
D. Baleanu, S.I. Muslih, E.M. Rabei, Nonlinear Dyn. 53, 67 (2008)
B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 1 (2015)
D. Baleanu, Signal Proc. 86, 2632 (2006)
S. Kazem, S. Abbasbandy, S. Kumar, Appl. Math. Mod. 37, 5498 (2013)
S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei, J. Fract. Calculus Appl. 2, 1 (2012)
K.A. Lazopoulos, A.K. Lazopoulos, Acta Mech. 227, 823 (2016)
T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)
M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)
J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)
A. Atangana, D. Baleanu, J. Eng. Mech. (2016) DOI:10.1061/(ASCE)EM.1943-7889.0001091
A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 1 (2016)
A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)
J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 1 (2016)
J.F. Gómez-Aguilar, V.F. Morales-Delgado, M. Taneco-Hernández, D. Baleanu, R.F. Escobar-Jiménez, M.M. Al Qurashi, Entropy 18, 402 (2016)
A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)
B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 1 (2016)
O.J.J. Algahtani, Chaos, Solitons Fractals 89, 552 (2016)
B.S.T. Alkahtani, A. Atangana, Chaos, Solitons Fractals 89, 566 (2016)
A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, G.V. Guerrero-Ramírez, Chaos, Solitons Fractals 91, 248 (2016)
J.F. Gómez-Aguilar, to be published in Physica A (2016)
A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)
M.A. Ozarslan, E. Ozergin, Math. Comput. Modell. 52, 1825 (2010)
E. Ozergin, M.A. Ozarslan, A. Altin, J. Comput. Appl. Math. 235, 4601 (2011)
I.O. Kymaz, A. Cetinkaya, P. Agarwal, J. Nonlinear Sci. Appl. 9, 3611 (2016)
A.A. Kilbas, M. Saigo, R.K. Saxena, J. Integral Equ. Appl. 14, 377 (2002)
R. Hilfer, Fractional Calculus and Regular Variation in Thermodynamics, edited by R. Hilfer, Applications of Fractional Calculus in Physics, Vol. 429 (World Scientific, Singapore, 2000)
R. Hilfer, Threefold Introduction to Fractional Derivatives, in Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008) DOI:10.1002/9783527622979.ch2
R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Appl. Math. Comput. 242, 576 (2014)
T. Sandev, R. Metzler, Z. Tomovski, J. Phys. A 44, 255203 (2011)
A. Atangana, Eur. Phys. J. Plus 131, 373 (2016)
P. Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna, B. West, Adv. Math. Phys. 2013, 498789 (2013)
R. Failla, P. Grigolini, M. Ignaccolo, A. Schwettmann, Phys. Rev. E 70, 010101 (2004)
F. Sabzikar, M.M. Meerschaert, J. Chen, J. Comput. Phys. 293, 14 (2015)
I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, Heidelberg, 2011)
R. Genesio, A. Tesi, Automatica 28, 531 (1992)
R.B. Leipnik, T.A. Newton, Phys. Lett. A 86, 63 (1981)
N. Samardzija, L.D. Greller, Bull. Math. Biol. 50, 465 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gómez-Aguilar, J.F., Atangana, A. New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 13 (2017). https://doi.org/10.1140/epjp/i2017-11293-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2017-11293-3