Skip to main content
Log in

New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sousa, C. Li, Appl. Numer. Math. 90, 22 (2015)

    Article  MathSciNet  Google Scholar 

  2. D. Baleanu, S.I. Muslih, E.M. Rabei, Nonlinear Dyn. 53, 67 (2008)

    Article  MathSciNet  Google Scholar 

  3. B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 1 (2015)

    Article  Google Scholar 

  4. D. Baleanu, Signal Proc. 86, 2632 (2006)

    Article  Google Scholar 

  5. S. Kazem, S. Abbasbandy, S. Kumar, Appl. Math. Mod. 37, 5498 (2013)

    Article  MathSciNet  Google Scholar 

  6. S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei, J. Fract. Calculus Appl. 2, 1 (2012)

    Google Scholar 

  7. K.A. Lazopoulos, A.K. Lazopoulos, Acta Mech. 227, 823 (2016)

    Article  MathSciNet  Google Scholar 

  8. T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)

    Article  MathSciNet  Google Scholar 

  9. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  10. J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  11. A. Atangana, D. Baleanu, J. Eng. Mech. (2016) DOI:10.1061/(ASCE)EM.1943-7889.0001091

  12. A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 1 (2016)

    Article  Google Scholar 

  13. A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  14. J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 1 (2016)

    Article  Google Scholar 

  15. J.F. Gómez-Aguilar, V.F. Morales-Delgado, M. Taneco-Hernández, D. Baleanu, R.F. Escobar-Jiménez, M.M. Al Qurashi, Entropy 18, 402 (2016)

    Article  ADS  Google Scholar 

  16. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  17. B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 1 (2016)

    Article  MathSciNet  Google Scholar 

  18. O.J.J. Algahtani, Chaos, Solitons Fractals 89, 552 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. B.S.T. Alkahtani, A. Atangana, Chaos, Solitons Fractals 89, 566 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, G.V. Guerrero-Ramírez, Chaos, Solitons Fractals 91, 248 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.F. Gómez-Aguilar, to be published in Physica A (2016)

  22. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.A. Ozarslan, E. Ozergin, Math. Comput. Modell. 52, 1825 (2010)

    Article  Google Scholar 

  24. E. Ozergin, M.A. Ozarslan, A. Altin, J. Comput. Appl. Math. 235, 4601 (2011)

    Article  Google Scholar 

  25. I.O. Kymaz, A. Cetinkaya, P. Agarwal, J. Nonlinear Sci. Appl. 9, 3611 (2016)

    Google Scholar 

  26. A.A. Kilbas, M. Saigo, R.K. Saxena, J. Integral Equ. Appl. 14, 377 (2002)

    Article  Google Scholar 

  27. R. Hilfer, Fractional Calculus and Regular Variation in Thermodynamics, edited by R. Hilfer, Applications of Fractional Calculus in Physics, Vol. 429 (World Scientific, Singapore, 2000)

  28. R. Hilfer, Threefold Introduction to Fractional Derivatives, in Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008) DOI:10.1002/9783527622979.ch2

  29. R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Appl. Math. Comput. 242, 576 (2014)

    MathSciNet  Google Scholar 

  30. T. Sandev, R. Metzler, Z. Tomovski, J. Phys. A 44, 255203 (2011)

    Article  ADS  Google Scholar 

  31. A. Atangana, Eur. Phys. J. Plus 131, 373 (2016)

    Article  Google Scholar 

  32. P. Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna, B. West, Adv. Math. Phys. 2013, 498789 (2013)

    Article  Google Scholar 

  33. R. Failla, P. Grigolini, M. Ignaccolo, A. Schwettmann, Phys. Rev. E 70, 010101 (2004)

    Article  ADS  Google Scholar 

  34. F. Sabzikar, M.M. Meerschaert, J. Chen, J. Comput. Phys. 293, 14 (2015)

    Article  ADS  Google Scholar 

  35. I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, Heidelberg, 2011)

  36. R. Genesio, A. Tesi, Automatica 28, 531 (1992)

    Article  Google Scholar 

  37. R.B. Leipnik, T.A. Newton, Phys. Lett. A 86, 63 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Samardzija, L.D. Greller, Bull. Math. Biol. 50, 465 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Aguilar, J.F., Atangana, A. New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132, 13 (2017). https://doi.org/10.1140/epjp/i2017-11293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11293-3

Navigation