New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications

  • J. F. Gómez-AguilarEmail author
  • Abdon Atangana
Regular Article


Some physical problems found in nature can follow the power law; others can follow the Mittag-Leffler law and others the exponential decay law. On the other hand, one can observe in nature a physical problem that combines the three laws, it is therefore important to provide a new fractional operator that could possibly be used to model such physical problem. In this paper, we suggest a fractional operator power-law-exponential-Mittag-Leffler kernel with three fractional orders. Some very useful properties are obtained. Numerical solutions were obtained for three examples proposed. The results show that the new fractional operators are powerful mathematical tools to model complex problems.


  1. 1.
    E. Sousa, C. Li, Appl. Numer. Math. 90, 22 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Baleanu, S.I. Muslih, E.M. Rabei, Nonlinear Dyn. 53, 67 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 1 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Baleanu, Signal Proc. 86, 2632 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Kazem, S. Abbasbandy, S. Kumar, Appl. Math. Mod. 37, 5498 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei, J. Fract. Calculus Appl. 2, 1 (2012)Google Scholar
  7. 7.
    K.A. Lazopoulos, A.K. Lazopoulos, Acta Mech. 227, 823 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  10. 10.
    J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  11. 11.
    A. Atangana, D. Baleanu, J. Eng. Mech. (2016) DOI:10.1061/(ASCE)EM.1943-7889.0001091
  12. 12.
    A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 1 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)Google Scholar
  14. 14.
    J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 1 (2016)CrossRefGoogle Scholar
  15. 15.
    J.F. Gómez-Aguilar, V.F. Morales-Delgado, M. Taneco-Hernández, D. Baleanu, R.F. Escobar-Jiménez, M.M. Al Qurashi, Entropy 18, 402 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  17. 17.
    B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 1 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    O.J.J. Algahtani, Chaos, Solitons Fractals 89, 552 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    B.S.T. Alkahtani, A. Atangana, Chaos, Solitons Fractals 89, 566 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, G.V. Guerrero-Ramírez, Chaos, Solitons Fractals 91, 248 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J.F. Gómez-Aguilar, to be published in Physica A (2016)Google Scholar
  22. 22.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M.A. Ozarslan, E. Ozergin, Math. Comput. Modell. 52, 1825 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Ozergin, M.A. Ozarslan, A. Altin, J. Comput. Appl. Math. 235, 4601 (2011)CrossRefGoogle Scholar
  25. 25.
    I.O. Kymaz, A. Cetinkaya, P. Agarwal, J. Nonlinear Sci. Appl. 9, 3611 (2016)Google Scholar
  26. 26.
    A.A. Kilbas, M. Saigo, R.K. Saxena, J. Integral Equ. Appl. 14, 377 (2002)CrossRefGoogle Scholar
  27. 27.
    R. Hilfer, Fractional Calculus and Regular Variation in Thermodynamics, edited by R. Hilfer, Applications of Fractional Calculus in Physics, Vol. 429 (World Scientific, Singapore, 2000)Google Scholar
  28. 28.
    R. Hilfer, Threefold Introduction to Fractional Derivatives, in Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, I.M. Sokolov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008) DOI:10.1002/9783527622979.ch2
  29. 29.
    R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Appl. Math. Comput. 242, 576 (2014)MathSciNetGoogle Scholar
  30. 30.
    T. Sandev, R. Metzler, Z. Tomovski, J. Phys. A 44, 255203 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A. Atangana, Eur. Phys. J. Plus 131, 373 (2016)CrossRefGoogle Scholar
  32. 32.
    P. Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna, B. West, Adv. Math. Phys. 2013, 498789 (2013)CrossRefGoogle Scholar
  33. 33.
    R. Failla, P. Grigolini, M. Ignaccolo, A. Schwettmann, Phys. Rev. E 70, 010101 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    F. Sabzikar, M.M. Meerschaert, J. Chen, J. Comput. Phys. 293, 14 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, Heidelberg, 2011)Google Scholar
  36. 36.
    R. Genesio, A. Tesi, Automatica 28, 531 (1992)CrossRefGoogle Scholar
  37. 37.
    R.B. Leipnik, T.A. Newton, Phys. Lett. A 86, 63 (1981)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    N. Samardzija, L.D. Greller, Bull. Math. Biol. 50, 465 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CONACyT-Centro Nacional de Investigación y Desarrollo TecnológicoTecnológico Nacional de México, Interior Internado Palmira S/NCuernavacaMexico
  2. 2.Institute for Groundwater Studies, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations