Skip to main content

New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves


In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the (\( G^{\prime}/G\))-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.

This is a preview of subscription content, access via your institution.


  1. A. Biswas, Appl. Math. Lett. 22, 208 (2009)

    Article  MathSciNet  Google Scholar 

  2. N. Bibi, S.I.A. Tirmizi, S. Haq, Appl. Math. 2, 608 (2011)

    Article  MathSciNet  Google Scholar 

  3. B.S. Kashkari, Appl. Math. Sci. 8, 3243 (2014)

    Article  MathSciNet  Google Scholar 

  4. H. Hasimoto, Kagaku 40, 401 (1970) (in Japanese)

    Google Scholar 

  5. T. Kakutani H. Ono, J. Phys. Soc. Jpn. 26, 1305 (1969)

    Article  ADS  Google Scholar 

  6. T. Kawahara, J. Phys. Soc. Jpn. 33, 260 (1972)

    Article  ADS  Google Scholar 

  7. T. Bridges, G. Derks, SIAM J. Math. Anal. 33, 1356 (2002)

    Article  Google Scholar 

  8. J.K. Hunter, J. Scheurle, Physica D 32, 253 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Podlubny, Fractional differential Equation (Academic Press, New York, 1999)

  10. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: Theory and Applications (Taylor and Francis, London, 2002)

  11. S. Saha Ray, Appl. Math. Comput. 218, 5239 (2012)

    MathSciNet  Google Scholar 

  12. T.M. Atanackovic, B. Stankovic, Z. Angew. Math. Mech. 82, 377 (2002)

    Article  Google Scholar 

  13. S. Sahoo, S. Saha Ray, S. Das, R.K. Bera, Int. J. Mod. Phys. C 27, 1650074 (2016)

    Article  ADS  Google Scholar 

  14. A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, Commun. Theor. Phys. 52, 992 (2009)

    Article  ADS  Google Scholar 

  15. S. Saha Ray, S. Sahoo, Neural Comput. Appl. 26, 1495 (2015)

    Article  Google Scholar 

  16. S. Saha Ray, S. Sahoo, Math. Methods Appl. Sci. 38, 2840 (2015)

    Article  MathSciNet  Google Scholar 

  17. S. Saha Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics (Boca Raton, 2016)

  18. S. Das, Functional Fractional Calculus (Springer, New York, 2011)

  19. A. Akgül, A. Kiliçman, M. Inc, Abstract Appl. Anal. 2013, 414353 (2013)

    Article  Google Scholar 

  20. G.W. Wang, X.Q. Liu, Y. Zhang, Appl. Math. 3, 523 (2012)

    Article  ADS  Google Scholar 

  21. Z. Bin, Commun. Theor. Phys. 58, 623 (2012)

    Article  Google Scholar 

  22. X.J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)

  23. X.J. Yang, J. Appl. Libr. Inf. Sci. 1, 1 (2012)

    Google Scholar 

  24. X.J. Yang, Prespacetime J. 3, 913 (2012)

    Google Scholar 

  25. M.S. Hu, D. Baleanu, X.J. Yang, Math. Probl. Eng. 2013, 358473 (2013)

    Google Scholar 

  26. A. Bekir, Ö. Güner, A.C. Cevikel, Abstract Appl. Anal. 2013, 426462 (2013)

    Article  Google Scholar 

  27. W.H. Su, X.J. Yang, H. Jafari, D. Baleanu, Adv. Differ. Equ. 2013, 1 (2013)

    Article  Google Scholar 

  28. X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and Their Applications (Academic Press, Elsevier, 2015)

  29. J.H. He, S.K. Elagan, Z.B. Li, Phys. Lett. A 376, 257 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Güner, A. Bekir, A.C. Cevikel, Eur. Phys. J. Plus 130, 146 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Saha Ray.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha Ray, S., Sahoo, S. New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves. Eur. Phys. J. Plus 132, 9 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: