Abstract.
In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the (\( G^{\prime}/G\))-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.
This is a preview of subscription content, access via your institution.
References
A. Biswas, Appl. Math. Lett. 22, 208 (2009)
N. Bibi, S.I.A. Tirmizi, S. Haq, Appl. Math. 2, 608 (2011)
B.S. Kashkari, Appl. Math. Sci. 8, 3243 (2014)
H. Hasimoto, Kagaku 40, 401 (1970) (in Japanese)
T. Kakutani H. Ono, J. Phys. Soc. Jpn. 26, 1305 (1969)
T. Kawahara, J. Phys. Soc. Jpn. 33, 260 (1972)
T. Bridges, G. Derks, SIAM J. Math. Anal. 33, 1356 (2002)
J.K. Hunter, J. Scheurle, Physica D 32, 253 (1988)
I. Podlubny, Fractional differential Equation (Academic Press, New York, 1999)
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: Theory and Applications (Taylor and Francis, London, 2002)
S. Saha Ray, Appl. Math. Comput. 218, 5239 (2012)
T.M. Atanackovic, B. Stankovic, Z. Angew. Math. Mech. 82, 377 (2002)
S. Sahoo, S. Saha Ray, S. Das, R.K. Bera, Int. J. Mod. Phys. C 27, 1650074 (2016)
A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, Commun. Theor. Phys. 52, 992 (2009)
S. Saha Ray, S. Sahoo, Neural Comput. Appl. 26, 1495 (2015)
S. Saha Ray, S. Sahoo, Math. Methods Appl. Sci. 38, 2840 (2015)
S. Saha Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics (Boca Raton, 2016)
S. Das, Functional Fractional Calculus (Springer, New York, 2011)
A. Akgül, A. Kiliçman, M. Inc, Abstract Appl. Anal. 2013, 414353 (2013)
G.W. Wang, X.Q. Liu, Y. Zhang, Appl. Math. 3, 523 (2012)
Z. Bin, Commun. Theor. Phys. 58, 623 (2012)
X.J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)
X.J. Yang, J. Appl. Libr. Inf. Sci. 1, 1 (2012)
X.J. Yang, Prespacetime J. 3, 913 (2012)
M.S. Hu, D. Baleanu, X.J. Yang, Math. Probl. Eng. 2013, 358473 (2013)
A. Bekir, Ö. Güner, A.C. Cevikel, Abstract Appl. Anal. 2013, 426462 (2013)
W.H. Su, X.J. Yang, H. Jafari, D. Baleanu, Adv. Differ. Equ. 2013, 1 (2013)
X.J. Yang, D. Baleanu, H.M. Srivastava, Local Fractional Integral Transforms and Their Applications (Academic Press, Elsevier, 2015)
J.H. He, S.K. Elagan, Z.B. Li, Phys. Lett. A 376, 257 (2012)
O. Güner, A. Bekir, A.C. Cevikel, Eur. Phys. J. Plus 130, 146 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saha Ray, S., Sahoo, S. New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves. Eur. Phys. J. Plus 132, 9 (2017). https://doi.org/10.1140/epjp/i2017-11276-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2017-11276-4