Thermal efficiency evaluation of solar rings in tubes

  • Seyed Ebrahim GhasemiEmail author
  • Ali Akbar Ranjbar
Regular Article


In this article, the thermal efficiency of solar rings in tubes is investigated numerically. The effect of the distance between solar rings and the size of the rings on fluid flow and heat transfer are studied. This numerical simulation is implemented by using Computational Fluid Dynamics (CFD). Characteristics of the Nusselt number, friction factor, and thermal performance factor are investigated. The heat transfer fluid is Therminol 55 oil and the analysis is carried out based on the renormalization-group (RNG) k-\(\varepsilon\) turbulence model. The computation results show that the Nusselt number is augmented in comparison with the smooth tube, which confirms that the solar ring has a good effect of heat transfer enhancement. Also, by decreasing the distance between solar rings, the heat transfer coefficient increases, but by increasing the inner diameter of the solar rings, the Nusselt number decreases.


  1. 1.
    M. Geyer, International market introduction of concentrated solar powerpolicies and benefit, in Proceedings of ISES World Congress 2007 (Springer, Berlin, Heidelberg, 2009) pp. 75--82Google Scholar
  2. 2.
    S.A. Kalogirou, Prog. Energy Combust. Sci. 30, 231e295 (2004)CrossRefGoogle Scholar
  3. 3.
    F.L. Porta, Technical and Economical Analysis of Future Perspectives of Solar Thermal Power Plants, Report of IER (2005) pp. 1--86Google Scholar
  4. 4.
    H.M. Sahin, E. Baysal, A.R. Dal, Int. J. Energy Res. 37, 1088 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Wang, B. Sunden, Int. Commun. Heat Mass Transf. 49, 45 (2002)CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, Z. Yu, X. Fang, Appl. Therm. Eng. 27, 268 (2007)CrossRefGoogle Scholar
  7. 7.
    L.D. Tijing, B.C. Pak, B.J. Baek, D.H. Lee, Int. Commun. Heat Mass Transf. 33, 719 (2006)CrossRefGoogle Scholar
  8. 8.
    S.N. Sarada, A.V. Sita Rama Raju, K.K. Radha, L.S. Sunder, Int. J. Eng. Sci. Technol. 2, 107 (2010)Google Scholar
  9. 9.
    S. Chokphoemphun, M. Pimsarn, C. Thianpong, P. Promvonge, Chin. J. Chem. Eng. 23, 755 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Tanda, Int. J. Heat Mass Transf. 47, 229 (2004)CrossRefGoogle Scholar
  11. 11.
    T.T. Wong, C.W. Leung, Z.Y. Li, W.Q Tao, Int. J. Heat Mass Transf. 46, 4629 (2003)CrossRefGoogle Scholar
  12. 12.
    M.A. Akhavan Behabadi, M.K. Sadoughi, Milad Darzi, M. Fakoor Pakdaman, Exp. Therm. Fluid Sci. 66, 46 (2015)CrossRefGoogle Scholar
  13. 13.
    Milad Darzi, M.A. Akhavan-Behabadi, M.K. Sadoughi, Pooyan Razi, Int. Commun. Heat Mass Transf. 62, 18 (2015)CrossRefGoogle Scholar
  14. 14.
    N. Shaikh, M.H.K. Siddiqui, Int. J. Heat Fluid Flow 28, 318 (2007)CrossRefGoogle Scholar
  15. 15.
    S.E. Ghasemi, A.A. Ranjbar, A. Ramiar, Nanomaterials 5, 100 (2013)Google Scholar
  16. 16.
    S.E. Ghasemi, A.A. Ranjbar, J. Mol. Liq. 222, 159 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Naphon, Int. Commun. Heat Mass Transf. 33, 753 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Yakut, B. Sahin, Appl. Energy 78, 273 (2004)CrossRefGoogle Scholar
  19. 19.
    S.N. Kondepudi, D.L. O'Neal, Exp. Therm. Fluid Sci. 4, 613 (1991)CrossRefGoogle Scholar
  20. 20.
    S.E. Ghasemi, A.A. Ranjbar, A. Ramiar, J. Math. Comput. Sci. 7, 89 (2013)Google Scholar
  21. 21.
    S.E. Ghasemi, A.A. Ranjbar, A. Ramiar, J. Math. Comput. Sci. 7, 1 (2013)CrossRefGoogle Scholar
  22. 22.
    B.E. Launder, D.B. Spalding, Comp. Methods Appl. Mech. Eng. 3, 269 (1974)CrossRefGoogle Scholar
  23. 23.
    Henk Kaarle Versteeg, Weeratunge Malalasekera, An introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, 2007)Google Scholar
  24. 24.
    V. Yakhot, S. Thangam, T.B. Gatski, S.A. Orszag, C.G. Speziale, Phys. Fluids A 4, 1510 (1992)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. Yakhot, L.M. Smith, J. Sci. Comput. 7, 35 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Zheng, C.X. Lin, M.A. Ebadian, Numer. Heat Transf. A Appl. 44, 149 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Eiamsa-ard, P. Promvonge, Appl. Therm. Eng. 30, 1673 (2010)CrossRefGoogle Scholar
  28. 28.
    F.P. Incropera, P.D. Witt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, sixth edition (John-Wiley & Sons, 2006)Google Scholar
  29. 29.
    R.L. Webb, Int. J. Heat Mass Transf. 24, 715 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBabol University of TechnologyBabolIran

Personalised recommendations