Skip to main content
Log in

Higher-order rogue waves with new spatial distributions for the (2 + 1) -dimensional two-component long-wave-short-wave resonance interaction system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, a two-component (2 + 1) -dimensional long-wave-short-wave (LWSW) system with nonlinearity coefficients, which describes the nonlinear resonance interaction between two short waves and a long wave, is studied. Via the Hirota's bilinear method and Pfaffian, N -order rogue waves for the LWSW system are constructed. Furthermore, correction of the N -order rogue waves is proved directly via the Pfaffian, which is cumbersome or inaccessible in other methods. Results of the first- and second-order rogue waves are presented: 1) For the first-order rogue waves, the two short-wave components are bright, while the long-wave component is dark. The position of maximum amplitude of the rogue wave is analyzed. Evolution process for the first-order rogue wave is also presented and discussed. 2) Choosing different forms of the elements defined in the Pfaffian, we obtain some kinds of the second-order rogue waves with new spatial distributions: when the elements defined in Pfaffian are the same as the first-order rogue waves, we find that the second-order rogue waves for the two short-wave components are split into two first-order rogue waves and the two bumps coexist and interact with each other; when we change the combination of the elements in Pfaffian, we find that the second-order rogue waves for the two short-wave components are split into three and four first-order rogue waves. 3) N -order rogue waves for a general M -component LWSW system are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Onorato, D. Proment, A. Toffoli, Phys. Rev. Lett. 107, 184502 (2011)

    Article  ADS  Google Scholar 

  2. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009) 107, 184502 (2011)

  3. W.M. Moslem, P.K. Shukla, B. Eliasson, EPL 96, 25002 (2011)

    Article  ADS  Google Scholar 

  4. L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)

    Article  ADS  Google Scholar 

  5. W.M. Moslem, Phys. Plasmas 18, 032301 (2011)

    Article  ADS  Google Scholar 

  6. L. Stenflo, P.K. Shukla, J. Plasma Phys. 75, 841 (2009)

    Article  ADS  Google Scholar 

  7. M. Shats, H. Punzmann, H. Xia, Phys. Rev. Lett. 104, 104503 (2010)

    Article  ADS  Google Scholar 

  8. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  9. R. Höhmann, U. Kuhl, H.J. Stöckmann, L. Kaplan, E.J. Heller, Phys. Rev. Lett. 104, 093901 (2010)

    Article  ADS  Google Scholar 

  10. A. Montina, U. Bortolozzo, S. Residori, F.T. Arecchi, Phys. Rev. Lett. 103, 173901 (2009)

    Article  ADS  Google Scholar 

  11. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Phys. Rev. A 80, 033610 (2009)

    Article  ADS  Google Scholar 

  12. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  13. N. Akhmediev, E. Pelinovsky, Eur. Phys. J. ST 185, 1 (2010)

    Article  Google Scholar 

  14. D.H. Peregrine, J. Austral. Math. Soc. Ser. B 25, 16 (1983)

    Article  MathSciNet  Google Scholar 

  15. B. Guo, L. Ling, Q.P. Liu, Phys. Rev. E 85, 026607 (2012)

    Article  ADS  Google Scholar 

  16. L. Ling, B. Guo, L.C. Zhao, Phys. Rev. E 89, 041201 (2014)

    Article  ADS  Google Scholar 

  17. B. Guo, L. Ling, Q.P. Liu, Stud. Appl. Math. 130, 317 (2013)

    Article  MathSciNet  Google Scholar 

  18. Y. Ohta, J. Yang, Proc. R. Soc. A 468, 1716 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Ohta, J. Yang, J. Phys. A 47, 255201 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. W.P. Zhong, M.R. Belić, T.W. Huang, Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  21. Shally Loomba, Harleen Kaur, Phys. Rev. E 88, 062903 (2013)

    Article  ADS  Google Scholar 

  22. Y. Ohta, J. Yang, Phys. Rev. E 86, 036604 (2012)

    Article  ADS  Google Scholar 

  23. Y. Ohta, J. Yang, J. Phys. A 46, 105202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. U. Bandelow, N. Akhmediev, Phys. Rev. E 86, 026606 (2012)

    Article  ADS  Google Scholar 

  26. S. Chen, L.Y. Song, Phys. Lett. A 378, 1228 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. W.R. Sun, B. Tian, H.L. Zhen, Y. Sun, Nonlinear Dyn. 81, 725 (2015)

    Article  MathSciNet  Google Scholar 

  28. A. Kundu, A. Mukherjee, arXiv:1305.4023 (2013)

  29. A.R. Osborne, M. Onorato, M. Serio, Phys. Lett. A 275, 386 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P.A.E.M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A.R. Osborne, M. Serio, C.T. Stansberg, H. Tamura, K. Trulsen, Phys. Rev. Lett. 102, 114502 (2009)

    Article  ADS  Google Scholar 

  31. Bengt Eliasson, P.K. Shukla, Phys. Rev. Lett. 105, 014501 (2010)

    Article  ADS  Google Scholar 

  32. A. Kundu, A. Mukherjee, T. Naskar, Proc. R. Soc. A 470, 2164 (2014)

    Article  MathSciNet  Google Scholar 

  33. A. Mukherjee, M.S. Janaki, A. Kundu, Phys. Plasmas 22, 072302 (2015)

    Article  ADS  Google Scholar 

  34. Y. Ohta, K. Maruno, M. Oikawa, J. Phys. A 40, 7659 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Oikawa, M. Okamura, M. Funakoshi, J. Phys. Soc. Jpn. 58, 4416 (1989)

    Article  ADS  Google Scholar 

  36. R.H.J. Grimshaw, Stud. Appl. Math. 56, 241 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Chen, Y. Chen, B.F. Feng, K. Maruno, J. Phys. Soc. Jpn. 84, 034002 (2015)

    Article  ADS  Google Scholar 

  38. R. Hirota, Y. Ohta, J. Phys. Soc. Jpn. 60, 789 (1991)

    Article  ADS  Google Scholar 

  39. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  40. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

  41. J. Chai, B. Tian, X.Y. Xie, Y. Sun, Commun. Nonlinear Sci. Numer. Simulat. 39, 472 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Chai, B. Tian, W.R. Sun, X.Y. Xie, Comput. Math. Appl. 71, 2060 (2016)

    Article  MathSciNet  Google Scholar 

  43. J.W. Yang, Y.T. Gao, Y.J. Feng, C.Q. Su, Solitons and dromion-like structures in an inhomogeneous optical fiber, Nonlinear Dyn. (2016) DOI:10.1007/s11071-016-3083-8

  44. H.M. Yin, B. Tian, J. Chai, X.Y. Wu, W.R. Sun, Appl. Math. Lett. 58, 178 (2016)

    Article  MathSciNet  Google Scholar 

  45. H.M. Yin, B. Tian, H.L. Zhen, J. Chai, X.Y. Wu, Mod. Phys. Lett. B 30, 1650306 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JW., Gao, YT., Sun, YH. et al. Higher-order rogue waves with new spatial distributions for the (2 + 1) -dimensional two-component long-wave-short-wave resonance interaction system. Eur. Phys. J. Plus 131, 416 (2016). https://doi.org/10.1140/epjp/i2016-16416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16416-8

Navigation