Skip to main content
Log in

Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the pool boiling heat transfer of Fe3O4 -deionized (DI) water as a magnetic nanofluid has been experimentally analyzed in the atmospheric pressure. The applied nanofluid within this research has been synthesized through a single step to retain a high stability. The repeatability and precision of the testing device with deionized water show a good agreement with the equations introduced in previous studies. Parametric studies on magnetic field, surface roughness, and magnetic nanofluid concentration are performed to reveal various aspects of the boiling heat transfer. In order to study the surface roughness, two surfaces with high average roughness (480nm) and low average roughness (7.3nm) were used. The obtained results indicate that the boiling heat transfer on the rough surface increases when raising the nanofluid concentration up to 0.1% volume concentration. In addition, it is observed that there is an optimum 0.1% volume concentration for the nanofluid which makes the boiling heat transfer coefficient increase up to 43%. Moreover, the heat transfer of a nanofluid with volume concentration of 0.1% is greater for the rough surface compared with the smooth one. The results of the experiments indicate that adding nanoparticles would not necessarily increase the boiling heat transfer coefficient. In fact, the surface roughness and the magnetic field gradient on the boiling surface were the main factors that could affect the boiling heat transfer coefficient significantly. The simultaneous analysis of magnetic field, surface roughness, and nanofluid concentration reveals that the boiling heat transfer coefficient of the magnetic nanofluid with 0.1% volume concentration in the presence of a magnetic field on the rough surface is higher than on the smooth surface. Our findings show that this increase is associated to the increase of nucleation sites concentration and bubble formation sites for the rough surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Chang, W.-P. Baek, in Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea (2003) pp. 1--20

  2. S.V. Mousavi, M. Sheikholeslami, M.B. Gerdroodbary, Chem. Eng. Res. Des. 113, 112 (2016)

    Article  Google Scholar 

  3. S.V. Mousavi, M.B. Gerdroodbary, M. Sheikholeslami, D.D. Ganji, Eur. Phys. J. Plus 131, 347 (2016)

    Article  Google Scholar 

  4. A. Abdollahi, M.R. Salimpour, N. Etesami, Appl. Therm. Eng. 111, 1101 (2017)

    Article  Google Scholar 

  5. M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transfer 75, 262 (2016)

    Article  Google Scholar 

  6. M.H. Esfe, M. Afrand, W.M. Yan, H. Yarmand, D. Toghraie, M. Dahari, Int. Commun. Heat Mass Transfer 76, 133 (2016)

    Article  Google Scholar 

  7. A. Shahsavar, M. Saghafian, M.R. Salimpour, M.B. Shafii, Heat Mass Transfer 52, 2293 (2016)

    Article  ADS  Google Scholar 

  8. A. Shahsavar, M.R. Salimpour, M. Saghafian, M.B. Shafii, Thermochim. Acta 617, 102 (2015)

    Article  Google Scholar 

  9. S. Kim, I.C. Bang, J. Buongiorno, L. Hu, Int. J. Heat Mass Transfer 50, 4105 (2007)

    Article  Google Scholar 

  10. M.N. Golubovic, H.M. Hettiarachchi, W. Worek, W. Minkowycz, Appl. Therm. Eng. 29, 1281 (2009)

    Article  Google Scholar 

  11. R.A. Taylor, P.E. Phelan, Int. J. Heat Mass Transfer 52, 5339 (2009)

    Article  Google Scholar 

  12. M. Sheikhbahai, M.N. Esfahany, N. Etesami, Int. J. Therm. Sci. 62, 149 (2012)

    Article  Google Scholar 

  13. R.N. Hegde, S.S. Rao, R. Reddy, Int. J. Therm. Sci. 16, 445 (2012)

    Article  Google Scholar 

  14. S. You, J. Kim, K. Kim, Appl. Phys. Lett. 83, 3374 (2003)

    Article  ADS  Google Scholar 

  15. Z.-H. Liu, X.-F. Yang, J.-G. Xiong, Int. J. Therm. Sci. 49, 1156 (2010)

    Article  Google Scholar 

  16. S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Int. J. Heat Mass Transfer 53, 972 (2010)

    Article  Google Scholar 

  17. A. Suriyawong, S. Wongwises, Exp. Therm. Fluid Sci. 34, 992 (2010)

    Article  Google Scholar 

  18. R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, P. Jain, Int. J. Heat Mass Transfer 54, 1289 (2011)

    Article  Google Scholar 

  19. V.I. Sharma, J. Buongiorno, T.J. McKrell, L.W. Hu, Int. J. Heat Mass Transfer 61, 425 (2013)

    Article  Google Scholar 

  20. M.R. Raveshi, A. Keshavarz, M.S. Mojarrad, S. Amiri, Exp. Therm. Fluid Sci. 44, 805 (2013)

    Article  Google Scholar 

  21. V. Umesh, B. Raja, Exp. Therm. Fluid Sci. 64, 23 (2015)

    Article  Google Scholar 

  22. Z. Shahmoradi, N. Etesami, M.N. Esfahany, Int. Commun. Heat Mass Transfer 47, 113 (2013)

    Article  Google Scholar 

  23. M.A.L. de Bertodano, S. Leonardi, P.S. Lykoudis, Int. J. Heat Mass Transfer 41, 3491 (1998)

    Article  Google Scholar 

  24. P.S. Lykoudis, Int. J. Heat Mass Transfer 19, 1357 (1976)

    Article  Google Scholar 

  25. M. Takahashi, A. Inoue, T. Kaneko, Exp. Therm. Fluid Sci. 8, 67 (1994)

    Article  Google Scholar 

  26. L.Y. Wagner, P.S. Lykoudis, Int. J. Heat Mass Transfer 24, 635 (1981)

    Article  Google Scholar 

  27. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transfer Res. 45, 22 (2014)

    Article  Google Scholar 

  28. H. Teimouri, A. Mazaheri, M.R. Safaei, M.H. Esfe, J. Kamali, D. Toghraie, Int. J. Appl. Mech. 7, 1 (2016)

    Google Scholar 

  29. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi., Int. J. Appl. Electromagn. Mech. 46, 809 (2014)

    Google Scholar 

  30. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Int. Commun. Heat Mass Transfer 60, 13 (2015)

    Article  Google Scholar 

  31. A. Shahsavar, M. Saghafian, M.R. Salimpour, M.B. Shafii, Exp. Therm. Fluid Sci. 76, 1 (2016)

    Article  Google Scholar 

  32. A. Shahsavar, M.R. Salimpour, M. Saghafian, M.B. Shafii, J. Mech. Sci. Tech. 30, 809 (2016)

    Article  Google Scholar 

  33. L. Junhong, G. Jianming, L. Zhiwei, L. Hui, Heat Mass Transfer 41, 170 (2004)

    ADS  Google Scholar 

  34. M. Sheikholeslami, R. Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015)

    Article  Google Scholar 

  35. R. Ellahi, M. Hassan, A. Zeeshan, Int. J. Heat Mass Transfer 81, 449 (2015)

    Article  Google Scholar 

  36. R. Ellahi, A. Zeeshan, M. Hassan, Int. J. Numer. Methods Heat Fluid Flow 26, 2160 (2016)

    Article  Google Scholar 

  37. A. Zeeshan, A. Majeed, R. Ellahi, J. Mol. Liq. 215, 549 (2016)

    Article  Google Scholar 

  38. S.U. Rahman, R. Ellahi, S. Nadeem, Q.M.Z. Zia, J. Mol. Liq. 218, 484 (2016)

    Article  Google Scholar 

  39. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)

    Article  Google Scholar 

  40. M. Sheikholeslami, R. Ellahi, Appl. Sci. 5, 294 (2015)

    Article  Google Scholar 

  41. R. Ellahi, M. Hassn, A. Zeshan, Asia-Pacific J. Chem. Eng. 11, 179 (2016)

    Article  Google Scholar 

  42. N.S. Akbari, M. Raza, R. Ellahi, Comp. Methods Programs Biomed. 130, 22 (2016)

    Article  Google Scholar 

  43. P. Berger, N.B. Adelman, K.J. Beckman, D.J. Campbell, A.B. Ellis, G.C. Lisensky, J. Chem. Educ. 76, 943 (1999)

    Article  Google Scholar 

  44. M. Abareshi, E.K. Goharshadi, S.M. Zebarjad, H.K. Fadafan, A. Youssefi, J. Magn. & Magn. Mater. 322, 3895 (2010)

    Article  ADS  Google Scholar 

  45. R.J. Moffat, Exp. Therm. Fluid Sci. 1, 3 (1988)

    Article  ADS  Google Scholar 

  46. M. Kole, T. Dey, Appl. Therm. Eng. 37, 112 (2012)

    Article  Google Scholar 

  47. M. Kole, T. Dey, Int. J. Therm. Sci. 62, 61 (2012)

    Article  Google Scholar 

  48. R. Aghayari, M. Kerdegari, A.K. Shahin Khosravi, H. Maddah, A.H. Khalaj, J. Mater. Sci. Surf. Eng. 2, 109 (2015)

    Google Scholar 

  49. J. Ishimoto, M. Okubo, S. Kamiyama, M. Higashitani, JSME Int. J. Ser. B 38, 382 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Reza Salimpour, M. Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field. Eur. Phys. J. Plus 131, 414 (2016). https://doi.org/10.1140/epjp/i2016-16414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16414-x

Navigation