Skip to main content
Log in

CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The influence of a magnetic field on the nanofluid hydrothermal behavior in a porous curved enclosure is examined. A constant heat flux condition is considered for the inner wall. A new numerical approach is applied, namely the Control Volume-based Finite Element Method (CVFEM). Impacts of Darcy (Da) , Rayleigh (Ra) , Hartmann (Ha) numbers and volume fraction of Fe3O4 (\( \phi\)) on the hydrothermal treatment are graphically depicted in figures. Results reveal that the thermal boundary thickness increases with increasing Ha while it decreases with increasing Ra , \( \phi\) , Da . Nanofluid motion decreases with increasing the Hartmann number but it increases with increasing the Darcy number. At low Darcy and high Hartmann numbers, impact of adding Fe3O4 is more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asma Khalid, Ilyas Khan, Sharidan Shafie, Eur. Phys. J. Plus 130, 57 (2015)

    Article  Google Scholar 

  2. Mohsen Sheikholeslami, Ali J. Chamkha, Numer. Heat Transfer A 69, 1186 (2016)

    Article  ADS  Google Scholar 

  3. M. Sheikholeslami, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 43 (2016)

    Article  Google Scholar 

  4. Asma Khalid, Ilyas Khan, Sharidan Shafie, J. Mol. Liq. 221, 1175 (2016)

    Article  Google Scholar 

  5. A. Malvandi, M.H. Kaffash, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 52, 40 (2015)

    Article  Google Scholar 

  6. Aaiza Gul, Ilyas Khan, Sharidan Shafie, Asma Khalid, Arshad Khan, PloS ONE 10, e0141213 (2015)

    Article  Google Scholar 

  7. Farhad Ali, Madeha Gohar, Ilyas Khan, J. Mol. Liq. 223, 412 (2016)

    Article  Google Scholar 

  8. M. Sheikholeslami, Int. J. Hydrogen Energy (2016) DOI:10.1016/j.ijhydene.2016.09.185

  9. Gul Aaiza, Ilyas Khan, Sharidan Shafie, Nanoscale Res. Lett. 10, 490 (2015)

    Article  ADS  Google Scholar 

  10. Mohsen Sheikholeslami, Shirley Abelman, IEEE Trans. Nanotechnol. 14, 561 (2015)

    Article  ADS  Google Scholar 

  11. M. Sheikholeslami, R. Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015)

    Article  Google Scholar 

  12. G.H.R. Kefayati, Powder Technol. 299, 127 (2016)

    Article  Google Scholar 

  13. M.A. Sheremet, H.F. Oztop, I. Pop, J. Magn. & Magn. Mater. 416, 37 (2016)

    Article  ADS  Google Scholar 

  14. Mohsen Sheikholeslami Kandelousi, Eur. Phys. J. Plus 129, 248 (2014)

    Article  Google Scholar 

  15. Nor Athirah Mohd Zin, Ilyas Khan, Sharidan Shafie, J. Mol. Liq. 222, 138 (2016)

    Article  Google Scholar 

  16. Noreen Sher Akbar, M. Raza, R. Ellahi, Eur. Phys. J. Plus 129, 155 (2014)

    Article  Google Scholar 

  17. Mohsen Sheikholeslami, Davood Domiri Ganji, M. Younus Javed, R. Ellahi, J. Magn. & Magn. Mater. 374, 36 (2015)

    Article  ADS  Google Scholar 

  18. Mohsen Sheikholeslami, Kuppalapalle Vajravelu, Mohammad Mehdi Rashidi, Int. J. Heat Mass Transfer 92, 339 (2016)

    Article  Google Scholar 

  19. M. Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 107, 288 (2017)

    Article  Google Scholar 

  20. A. Zeeshan, R. Ellahi, M. Hassan, Eur. Phys. J. Plus 129, 261 (2014)

    Article  Google Scholar 

  21. M. Sheikholeslami, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 96, 513 (2016)

    Article  Google Scholar 

  22. Mohsen Sheikholeslami, Ali J. Chamkha, Numer. Heat Transfer A 69, 781 (2016)

    Article  ADS  Google Scholar 

  23. M. Sheikholeslami, H.R. Ashorynejad, P. Rana, J. Mol. Liq. 214, 86 (2016)

    Article  Google Scholar 

  24. M. Sheikholeslami, M.M. Rashidi, Eur. Phys. J. Plus 130, 115 (2015)

    Article  Google Scholar 

  25. Mohsen Sheikholeslami, Mohammad Mehdi Rashidi, J. Taiwan Inst. Chem. Eng. 56, 6 (2015)

    Article  Google Scholar 

  26. M. Sheikholeslami, R. Ellahi, J. Z. Naturforsch. A 70, 115 (2015)

    Google Scholar 

  27. Mohsen Sheikholeslami Kandelousi, Phys. Lett. A 378, 3331 (2014)

    Article  ADS  Google Scholar 

  28. M. Sheikholeslami, J. Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015)

    Article  Google Scholar 

  29. Mohsen Sheikholeslami, to be published in J. Mol. Liq., DOI:10.1016/j.molliq.2016.11.022

  30. M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer (2016) DOI:10.1016/j.ijheatmasstransfer.2016.10.107

  31. Ali J. Chamkha, Muneer A. Ismael, J. Thermal Sci. Eng. Appl 8, 031009 (2016)

    Article  Google Scholar 

  32. Mohsen Sheikholeslami, Ali J. Chamkha, J. Mol. Liq. (2016) DOI:10.1016/j.molliq.2016.11.001

  33. M. Sheikholeslami, D.D. Ganji, Energy 75, 400 (2014)

    Article  Google Scholar 

  34. Mohsen Sheikholeslami, Davood Domairry Ganji, Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method (Academic Press, 2015) pp. 1--226

  35. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  36. N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Int. J. Eng. Sci. 33, 1075 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur. Phys. J. Plus 131, 413 (2016). https://doi.org/10.1140/epjp/i2016-16413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16413-y

Navigation