Skip to main content
Log in

The adjoint neutron transport equation and the statistical approach for its solution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has been used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation, which is well known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appropriate kernels describing the transfer of the pseudo-particles in the phase space. This technique allows estimating the importance function by a standard Monte Carlo approach. The sampling scheme is validated by comparison with the analytical results previously obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Weinberg, E.P. Wigner, The Physical Theory of Neutron Chain Reactors (The University of Chicago Press, Chicago, IL, 1958)

  2. L.N. Ussachoff, Equation for the importance of neutrons, reactor kinetics and the theory of perturbations, in Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations Press, New York, 1955)

  3. M.A. Robkin, M.J. Clark, Nucl. Sci. Eng. 8, 437 (1960)

    Google Scholar 

  4. I. Pazsit, V. Dykin, Ann. Nucl. Energy 86, 29 (2015)

    Article  Google Scholar 

  5. J. Lewins, Importance, the Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems (Elsevier Science & Technology, 1965)

  6. A. Gandini, J. Nucl. Energy 21, 755 (1967)

    Article  ADS  Google Scholar 

  7. A. Gandini, Generalized perturbation theory (gpt) methods. A heuristic approach, in Advances in Nuclear Science and Technology, edited by J. Lewins, M. Becker (Plenum Publishing Corporation, New York, 1987) ch. 19

  8. A. Gandini, M. Salvatores, L. Tondinelli, Nucl. Sci. Eng. 62, 339 (1977)

    Google Scholar 

  9. S. Dulla, F. Cadinu, P. Ravetto, Neutron importance in source-driven systems, in International Topical Meeting on Mathematics and Computation, Supercomputing, Reactor Physics and Biological Applications, Avignon, 2005 (American Nuclear Society, LaGrange Park, 2005) CD-ROM

  10. A.F. Henry, Nucl. Sci. Eng. 3, 52 (1958)

    Article  Google Scholar 

  11. S. Dulla, E. Mund, P. Ravetto, Prog. Nucl. Energy 50, 908 (2008)

    Article  Google Scholar 

  12. H. Abdel-Khalik, Nucl. Eng. Des. 245, 49 (2012)

    Article  Google Scholar 

  13. H. Rief, Ann. Nucl. Energy 11, 455 (1984)

    Article  Google Scholar 

  14. H. Rief, Ann. Nucl. Energy 11, 455 (1984)

    Article  Google Scholar 

  15. M. Aufiero, A. Bidaud, M. Hursin, J. Leppänen, G. Palmiotti, S. Pelloni, P. Rubiolo, Ann. Nucl. Energy 85, 245 (2015)

    Article  Google Scholar 

  16. B. Kiedrowski, B. Brown, W. Wilson, Calculating kinetic parameters and reactivity changes with continuous energy Monte Carlo, in Proceedings of International Conference PHYSOR-2010, Pittsburgh, 2010 (American Nuclear Society, LaGrange Park, 2010) CD-ROM

  17. J. Leppänen, M. Aufiero, E. Fridman, R. Rachamin, S. van der Marck, Ann. Nucl. Energy 65, 272 (2014)

    Article  Google Scholar 

  18. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Ann. Nucl. Energy 85, 17 (2015)

    Article  Google Scholar 

  19. A. Dubi, S. Gerstl, Nucl. Sci. Eng. 76, 198 (1980)

    Google Scholar 

  20. J. Densmore, E.W. Larsen, J. Comput. Phys. 192, 387 (2003)

    Article  ADS  Google Scholar 

  21. J.E. Hoogenboom, Nucl. Sci. Eng. 143, 99 (2003)

    Article  Google Scholar 

  22. L. Carter, MCNA, a Computer Program to Solve the Adjoint Neutron Transport Equation by Coupled Sampling with the Monte Carlo Method (Los Alamos National Laboratory, Los Alamos, NM, 1971) LA-4488

  23. S.A.H. Feghhi, M. Shahriari, H. Afarideh, Ann. Nucl. Energy 34, 514 (2007)

    Article  Google Scholar 

  24. C.M. Diop, O. Petit, C. Jouanne, M. Coste-Delclaux, Ann. Nucl. Energy 37, 1186 (2010)

    Article  Google Scholar 

  25. D.C. Irving, Nucl. Eng. Des. 15, 273 (1971)

    Article  Google Scholar 

  26. A. De Matteis, Meccanica 3, 162 (1974)

    Article  MathSciNet  Google Scholar 

  27. A. De Matteis, R. Simonini, Nucl. Sci. Eng. 65, 93 (1978)

    Google Scholar 

  28. B. Eriksson, C. Johansson, M. Leimdorfer, M.H. Kalos, Nucl. Sci. Eng. 37, 410 (1969)

    Google Scholar 

  29. B. Ganapol, Analytical Benchmarks for Nuclear Engineering Applications, Case Studies in Neutron Transport Theory (NEA Data Bank, Paris, 2008) NEA/DB/DOC(2008)1, 6292

  30. G. Placzek, Phys. Rev. 69, 423 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.J. Duderstadt, W.R. Martin, Transport Theory (Wiley, New York, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saracco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saracco, P., Dulla, S. & Ravetto, P. The adjoint neutron transport equation and the statistical approach for its solution. Eur. Phys. J. Plus 131, 412 (2016). https://doi.org/10.1140/epjp/i2016-16412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16412-0

Navigation