Skip to main content

Advertisement

Log in

Thermal performances of vertical hybrid PV/T air collector

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebrahim M. Ali Alfegi, Kamaruzzaman Sopian, Mohd Yusof, Hj Othman, Baharudin Bin Yatim, ARPN J. Eng. Appl. Sci. 2, 22 (2007)

    Google Scholar 

  2. R. Mazón-Hernández et al., Int. J. Photoenergy 2013, 830968 (2013)

    Article  Google Scholar 

  3. Swapnil Dubey, G.S. Sandhu, G.N. Tiwari, Appl. Energy 86, 697 (2009)

    Article  Google Scholar 

  4. P.G. Charalambous, G.G. Maidment, S.A. Kalogirou, K. Yiakoumetti, Appl. Therm. Eng. 27, 275 (2007)

    Article  Google Scholar 

  5. H.A. Zondag, Sol. Energy 74, 253 (2003)

    Article  ADS  Google Scholar 

  6. Andreas K. Athienitis, James Bambara, Brendan O'Neill, Jonathan Faille, Sol. Energy 85, 139 (2011)

    Article  ADS  Google Scholar 

  7. C.S. Rajoria, Sanjay Agrawal, G.N. Tiwari, Sol. Energy 86, 1531 (2012)

    Article  ADS  Google Scholar 

  8. Deepali Kamthania, Sujata Nayak, G.N. Tiwari, Energy Build. 43, 2274 (2011)

    Article  Google Scholar 

  9. Georgios A. Vokas, Nikolaos G. Theodoropoulos, Demos P. Georgiou, Energy Proc. 50, 917 (2014)

    Article  Google Scholar 

  10. Feng Shan, Lei Cao, Guiyin Fang, Energy Build. 66, 485 (2013)

    Article  Google Scholar 

  11. Swapnil Dubey, G.N. Tiwari, Sol. Energy 82, 602 (2008)

    Article  ADS  Google Scholar 

  12. T.T. Chow, W. He, J. Ji, Appl. Therm. Eng. 27, 37 (2007)

    Article  Google Scholar 

  13. K. Touafek, M. Haddadi, A. Malek, Energy Build. 59, 21 (2013)

    Article  Google Scholar 

  14. Deepali Kamthaniaand G.N. Tiwari, J. Renew. Sustain. Energy 6, 062701 (2014)

    Article  Google Scholar 

  15. Adnan Ibrahim, Mohd Yusof Othman, Mohd Hafidz Ruslan, Sohif Mat, Kamaruzzaman Sopian, Renew. Sustain. Energy Rev. 15, 352 (2011)

    Article  Google Scholar 

  16. T.T. Chow, W. He, A.L.S. Chan, K.F. Fong, Z. Lin, J. Ji, Appl. Therm. Eng. 28, 1356 (2008)

    Article  Google Scholar 

  17. Sapfo Tsoutsou, Carlos Infante Ferreira, Jan Krieg, Mohamed Ezzahiri, Appl. Therm. Eng. 70, 647 (2014)

    Article  Google Scholar 

  18. M. Hamdani, S.M.A. Bekkouche, T. Benouaz, M.K. Cherier, Energy Proc. 18, 632 (2012)

    Article  Google Scholar 

  19. V.V. Tyagi, S.C. Kaushik, S.K. Tyagi, Renew. Sustain. Energy Rev. 16, 1383 (2012)

    Article  Google Scholar 

  20. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (JohnWiley & Sons, New York, 1991)

  21. Luis M. Candanedo, Andreas Athienitis, Kwang-Wook Park, J. Sol. Energy Eng. 133, 021002-1 (2011)

    Article  Google Scholar 

  22. Ebrahim M. Ali Alfegi, Kamaruzzaman Sopian, Mohd Yusof Hj Othman, Baharudin Bin Yatim, Am. J. Environ. Sci. 5, 592 (2009)

    Article  Google Scholar 

  23. Amin Elsafi, P. Gandhidasan, J. Clean Energy Technol. 3, 28 (2015)

    Article  Google Scholar 

  24. Arvind Tiwari, M.S. Sodha, Avinash Chandra, J.C. Joshi, Sol. Energy Mater. Sol. Cells 90, 175 (2006)

    Article  Google Scholar 

  25. I. Tabet, K. Touafek, N. Bellel, N. Bouarroudj, A. Khelifa, M. Adouane, J. Renew. Sustain. Energy 6, 053116 (2014)

    Article  Google Scholar 

  26. M. Capderou, Solar Atlas of Algeria, Vols. 1 and 2 (University Publications Office, Algeria, 1987)

  27. Mahdi Hedayatizadeh, Yahya Ajabshirchi, Faramarz Sarhaddi, Ali Safavinejad, Said Farahat, Hossein Chaji, Int. J. Green Energy 10, 494 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabet, I., Touafek, K., Bellel, N. et al. Thermal performances of vertical hybrid PV/T air collector. Eur. Phys. J. Plus 131, 410 (2016). https://doi.org/10.1140/epjp/i2016-16410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16410-2

Navigation