Skip to main content
Log in

A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow of a bio-convective Casson fluid past a wedge

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nowadays, many theoretical models are available for analyzing the heat and mass transfer of flows through different geometries. Nevertheless, it is challenging for researchers to choose among these models, the most suitable for a particular geometry. In addition to this, the extrinsic magnetic field is capable to set the thermal and physical properties of magnetic fluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of the fluids and makes it anisotropic. With this incentive, we attempt to study the thermophoresis and Brownian motion effects on the magnetohydrodynamic radiative Casson fluid flow over a wedge filled with gyrotactic microorganisms by considering the Blasius and Falkner-Skan models. Numerical solutions are offered graphically as well as in tabular form with the aid of Runge-Kutta and Newton's methods. Results for Blasius and Falkner-Skan flow cases are exhibited through plots for the parameters of concern. For real life applications, we also calculated the heat and mass transfer rates. It is observed that thermal and concentration boundary layers are not uniform for Falkner-Skan and Blasius flow cases. It is also observed that the heat and mass transfer rate is high in Falkner-Skan flow when compared with Blasius flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Guell, H. Brenner, R.B. Frankel, H. Hartman, J. Theor. Biol. 135, 525 (1988)

    Article  Google Scholar 

  2. A.J. Hillesdon, T.J. Pedley, J.O. Kessler, Bull. Math. Biol. 57, 299 (1995)

    Article  Google Scholar 

  3. T. Ishikawa, T.J. Pedley, J. Fluid Mech. 588, 399 (2007)

    ADS  MathSciNet  Google Scholar 

  4. T. Ishikawa, T.J. Pedley, J. Fluid Mech. 588, 437 (2007)

    ADS  MathSciNet  Google Scholar 

  5. V. Mehandia, P.R. Nott, J. Fluid Mech. 595, 239 (2008)

    Article  ADS  Google Scholar 

  6. T.J. Pedley, J. Fluid Mech. 647, 335 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. T.R.I. Nguyen-quang, F. Guichard, Int. J. Bifurc. Chaos 20, 1761 (2010)

    Article  MathSciNet  Google Scholar 

  8. S. Ghorai, M.K. Panda, N.A. Hill, Phys. Fluids 22, 071901 (2010)

    Article  ADS  Google Scholar 

  9. A.V. Kuznetsov, Int. Commun. Heat Mass Transfer 38, 548 (2011)

    Article  Google Scholar 

  10. J. Harris, Rheology and Non-Newtonian Flow (Longman, 1977)

  11. R.B. Bird, C.F. Curtis, R.C. Armstrong, O. Hassager, Dynamics of Polyometric Liquids (Wiley, 1987)

  12. T. Hayat, M. Hussain, S. Nadeem, S. Mesloub, Comp. Fluids 49, 22 (2011)

    Article  MathSciNet  Google Scholar 

  13. W.A. Khan, I. Pop, Math. Probl. Eng. 2013, 637285 (2013)

    MathSciNet  Google Scholar 

  14. S. Nadeem, R.U. Haq, N.S. Akbar, IEEE Trans. Nanotechnol. 13, 109 (2014)

    Article  ADS  Google Scholar 

  15. C.S.K. Raju, N. Sandeep, J. Mol. Liq. 215, 115 (2016)

    Article  Google Scholar 

  16. M.M. Rashidi, M.T. Rastegari, M. Asadi, O.A. Bég, Chem. Eng. Commun. 199, 231 (2011)

    Article  Google Scholar 

  17. C.S.K. Raju, N. Sandeep, Int. J. Eng. Res. Africa 20, 161 (2015)

    Article  Google Scholar 

  18. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  19. G.K. Batchelor, J.T. Green, J. Fluid Mech. 56, 375 (1972)

    Article  ADS  Google Scholar 

  20. B.G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  21. S.A. Shehzad, A. Alsaedi, T. Hayat, M.S. Alhuthali, J. Taiwan Inst. Chem. Eng. 45, 787 (2014)

    Article  Google Scholar 

  22. S. Mukhopadhyay, I.C. Mondal, A.J. Chamkha, Heat Transfer Asian Res. 42, 665 (2013)

    Article  Google Scholar 

  23. I.L. Animasaun, E.A. Adebile, A.I. Fagbade, J. Nigerian Math. Soc. 35, 1 (2016)

    Article  MathSciNet  Google Scholar 

  24. I.L. Animasaun, C.S.K. Raju, N. Sandeep, Alex. Eng. J. 55, 1595 (2016)

    Article  Google Scholar 

  25. C.S.K. Raju, N. Sandeep, Alex. Eng. J. 55, 1115 (2016)

    Article  Google Scholar 

  26. B.L. Kuo, Int. J. Heat Mass Transfer 48, 5036 (2005)

    Article  Google Scholar 

  27. K.A. Yin, Int. Commun. Heat Mass Transfer 26, 819 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sandeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, C.S.K., Sandeep, N. A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow of a bio-convective Casson fluid past a wedge. Eur. Phys. J. Plus 131, 405 (2016). https://doi.org/10.1140/epjp/i2016-16405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16405-y

Navigation