Skip to main content
Log in

Slope of the lateral density function of extensive air showers around the knee region as an indicator of shower age

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Analyzing simulated extensive air shower (EAS) events generated with the Monte Carlo code CORSIKA, this paper critically studies the characteristics of lateral distribution of electrons in EAS around the knee energy region of the energy spectrum of primary cosmic rays. The study takes into account the issue of the lateral shower age parameter as an indicator of the stage of development of showers in the atmosphere. The correlation of the lateral shower age parameter with other EAS observables is examined, using simulated data in the context of its possible use in a multi-parameter study of EAS, with a view to obtaining information about the nature of the shower initiating primaries at sea level EAS experiments. It is shown that the observed slope of the lateral density function in the 3-dimensional plot, at least for the KASCADE data, supports the idea of a transition from light to heavy mass composition around the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 100, 101101 (2008)

    Article  Google Scholar 

  2. The Pierre Auger Collaboration, Phys. Lett. B 685, 239 (2010)

    Article  ADS  Google Scholar 

  3. The Pierre Auger Collaboration, Phys. Rev. Lett. 101, 061101 (2008)

    Article  Google Scholar 

  4. Telescope Array Collaboration, Astrophys. J. 768, L1 (2013)

    Article  Google Scholar 

  5. G.T. Zatsepin, V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)

    Google Scholar 

  6. Fly's Eye Collaboration (D.J. Bird et al.), Phys. Rev. Lett. 71, 3401 (1993)

    Article  Google Scholar 

  7. HIRES Collaboration (R.U. Abbasi et al.), Astrophys. J. 622, 910 (2005)

    Article  ADS  Google Scholar 

  8. B. Rossi, K Greisen, Rev. Mod. Phys. 13, 240 (1941)

    Article  ADS  Google Scholar 

  9. J. Nishimura, K. Kamata, Progr. Theor. Phys. 5, 899 (1950)

    Article  ADS  Google Scholar 

  10. K. Greisen, Prog. Cosmic Ray Phys. 3, 1 (1956)

    Google Scholar 

  11. K. Kamata, J. Nishimura, Prog. Theor. Phys. Suppl. 6, 93 (1958)

    Article  ADS  Google Scholar 

  12. A.A. Lagutin, in Proceedings of the 16th ICRC, Kyoto, Vol. 1 (1979) p. 18

  13. V.V. Uchaikin, in Proceedings of the 16th ICRC, Vol. 1 (1979) p. 14

  14. G. Cocconi, in Handbuch der Physik: Cosmic Rays I, Vol. 46/1 (Springer, Berlin, 1961) p. 215

  15. J. Nishimura, in Handbuch der Physik: Cosmic Rays II, Vol. 46/2 (Springer, Berlin, 1967) p. 1

  16. R.K. Dey, A. Bhadra, J.N. Capdevielle, J. Phys. G: Nucl. Part. Phys. 39, 085201 (2012)

    Article  ADS  Google Scholar 

  17. W.D. Apel et al., Astropart. Phys. 24, 467 (2006)

    Article  ADS  Google Scholar 

  18. J.N. Capdevielle, J. Cohen, J. Phys. G: Nucl. Part. Phys. 31, 507 (2005)

    Article  ADS  Google Scholar 

  19. L.G. Dedenko, in Proceedings of the 14th ICRC, Munich, Vol. 8 (1975) p. 2731

  20. M. Hillas, J. Lapikens, in Proceedings of the 15th ICRC, Plovdiv, Vol. 8 (1977) p. 460

  21. KASCADE Collaboration (T. Antoni et al.), Astropart. Phys. 14, 245 (2001)

    Article  ADS  Google Scholar 

  22. J.N. Capdevielle, J. Gawin, J. Phys. G 8, 1317 (1982)

    Article  ADS  Google Scholar 

  23. J.N. Capdevielle, J. Procureur, in Proceedings of the 18th ICRC, Bangalore, Vol. 11 (1983) p. 307

  24. M.F. Bourdeau, J.N. Capdevielle, J. Procureur, J. Phys. G 6, 901 (1980)

    Article  ADS  Google Scholar 

  25. S.K. Gupta et al., Nucl. Instrum. Methods A 540, 311 (2005)

    Article  ADS  Google Scholar 

  26. G. Disciascio, T. Di Girolamo, Astrophys. Space Sci. 309, 537 (2007)

    Article  ADS  Google Scholar 

  27. K. Greisen, Annu. Rev. Nucl. Part. Sci. 10, 63 (1960)

    Article  ADS  Google Scholar 

  28. M. Giller, A. Kacperczyk, J. Malinowski, G. TkaczykWandWieczorek, J. Phys. G: Nucl. Part. Phys. 31, 947 (2005)

    Article  ADS  Google Scholar 

  29. F. Nerling, J. Blumer, R. Engel, M. Risse, Astropart. Phys. 24, 421 (2006)

    Article  ADS  Google Scholar 

  30. P. Lipari, Phys. Rev. D 79, 063001 (2009)

    Article  ADS  Google Scholar 

  31. S. Lafebre, R. Engel, H. Falcke, J. Hoerandel, T. Huege, J. Kuijpers, R. Ulrich, Astropart. Phys. 31, 243 (2009)

    Article  ADS  Google Scholar 

  32. F. Schmidt, M. Ave, L. Cazon, A. Chou, Astropart. Phys. 29, 355 (2008)

    Article  ADS  Google Scholar 

  33. D. Gora et al., Astropart. Phys. 24, 484 (2006)

    Article  ADS  Google Scholar 

  34. A. Yushkov et al., Phys. Rev. D 81, 123004 (2010)

    Article  ADS  Google Scholar 

  35. W.D. Apel et al., Astropart. Phys. 29, 412 (2008)

    Article  ADS  Google Scholar 

  36. J.N. Stamenov, in Proceedings of the 20th ICRC (Moscow), Vol. 8 (1987) p. 258

  37. J.N. Capdevielle, P. Gabinski, J. Phys. G.: Nucl. Part. Phys. 16, 769 (1990)

    Article  ADS  Google Scholar 

  38. A. Bhadra, S.K. Sarkar, C. Chakraborty, B. Ghosh, N. Chuodhuri, Nucl. Instrum. Methods A 414, 233 (1998)

    Article  ADS  Google Scholar 

  39. T. Antoni et al., Nucl. Instrum. Methods A 513, 490 (2003)

    Article  ADS  Google Scholar 

  40. D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, T. Thouw, CORSIKA: a Monte Carlo code to simulate extensive air showers (FZKA, Karlsruhe, 1998) report 6019

  41. N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Nucl. Phys. B (Proc. Suppl.) 52, 17 (1997)

    Article  ADS  Google Scholar 

  42. H. Fesefeldt, Report PITHA-85/02 (RWTH Aachen, 1985)

  43. H.J. Drescher et al., Astropart. Phys. 21, 87 (2004)

    Article  ADS  Google Scholar 

  44. W.R. Nelson, H. Hiramaya, D.W.O. Rogers, Report SLAC 265 (1985)

  45. R.S. Fletcher, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 50, 5710 (1994)

    Article  ADS  Google Scholar 

  46. National Aeronautics and Space Administration (NASA), U. S. Standard Atmosphere, Tech. Rep. NASA-TM-X-74335 (1976)

  47. J. Knapp, D. Heck, Tech. Rep. 5196B, Kernforschungszentrum Karlsruhe (1993)

  48. A. Bhadra, Pramana J. Phys. 52, 2 (1999)

    Article  Google Scholar 

  49. S. Miyake, in Proceedings of the ICRC, Vol. 13 (1979) p. 171

  50. J.N. Capdevielle, F. Coheh, J. Phys. G: Nucl. Part. Phys. 31, 507 (2005)

    Article  ADS  Google Scholar 

  51. J.N. Capdevielle, F. Cohen, J. Phys. G: Nucl. Part. Phys. 31, 1413 (2005)

    Article  ADS  Google Scholar 

  52. R.K. Dey, A. Bhadra, Astropart. Phys. 44, 68 (2013)

    Article  ADS  Google Scholar 

  53. Ph. Catz, in Proceedings of the ICRC, Vol. 4 (Denver, USA, 1973) p. 2495

  54. H. Ulrich et al., Nucl. Phys. B 175, 273 (2008)

    Article  Google Scholar 

  55. H. Ulrich et al., Nucl. Phys. B 196, 80 (2009)

    Article  Google Scholar 

  56. W.D. Apel et al., Astropart. Phys. 29, 412 (2008)

    Article  ADS  Google Scholar 

  57. D.A. Suprun, P.W. Gorham, J.L. Rosner, Astropart. Phys. 20, 157 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat K. Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Dam, S. Slope of the lateral density function of extensive air showers around the knee region as an indicator of shower age. Eur. Phys. J. Plus 131, 402 (2016). https://doi.org/10.1140/epjp/i2016-16402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16402-2

Navigation