Skip to main content

Advertisement

Log in

Maximum cycle work output optimization for generalized radiative law Otto cycle engines

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (\(q\propto\Delta (T^{n})\)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Acc. Chem. Res. 17, 266 (1984)

    Article  Google Scholar 

  2. S. Sieniutycz, P. Salamon (Editors), Advances in Thermodynamics, Vol. 4: Finite Time Thermodynamics and Thermoeconomics (Taylor & Francis, New York, 1990)

  3. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  4. C. Wu, L.G. Chen, J.C. Chen, Recent Advances in Finite Time Thermodynamics (Nova Science Publishers, New York, 1999)

  5. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Wiley, Chichester, 1999)

  6. L.G. Chen, C. Wu, F.R. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)

    ADS  Google Scholar 

  7. P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andresen, A. Limon, Energy 26, 307 (2001)

    Article  Google Scholar 

  8. K.H. Hoffman, J.M. Burzler, A. Fischer, M. Schaller, S. Schubert, J. Non-Equilib. Thermodyn. 28, 233 (2003)

    Article  ADS  Google Scholar 

  9. L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)

  10. L.G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (High Education Press, Beijing, 2005) (in Chinese)

  11. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)

    Article  Google Scholar 

  12. S.C. Kaushik, V.S. Reddy, S.K. Tyagi, Renew. Sustain. Energy Rev. 15, 1857 (2011)

    Article  Google Scholar 

  13. P.A. Ngouateu Wouagfack, R. Tchinda, Renew. Sustain. Energy Rev. 21, 524 (2013)

    Article  Google Scholar 

  14. V.S. Reddy, S.C. Kaushik, K.R. Ranjan, S.K. Tyagi, Renew. Sustain. Energy Rev. 27, 258 (2013)

    Article  Google Scholar 

  15. W.G. Le Roux, T. Bello-Ochende, J.P. Meyer, Renew. Sustain. Energy Rev. 28, 677 (2013)

    Article  Google Scholar 

  16. S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells (Elsevier, Oxford, UK, 2013)

  17. K.H. Hoffmann, B. Andresen, P. Salamon, Finite-time thermodynamics tools to analyze dissipative processes, in Proceedings of the 240 Conference: Science’s Great Challences, Advances in Chemical Physics, edited by A.R. Dinner, Vol. 157 (Wiley, 2015) pp. 57--67

  18. E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 73 (2015)

    Article  Google Scholar 

  19. E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 93 (2015)

    Article  Google Scholar 

  20. M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz, Eur. Phys. J. Plus 130, 190 (2015)

    Article  Google Scholar 

  21. M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, M. Feidt, Renew. Sustain. Energy Rev. 50, 871 (2015)

    Article  Google Scholar 

  22. M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, Renew. Sustain. Energy Rev. 51, 1055 (2015)

    Article  Google Scholar 

  23. L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (Science Press, Beijing, 2016) (in Chinese)

  24. L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles (Science Press, Beijing, 2016) (in Chinese)

  25. M.H. Ahmadi, M.A. Ahmadi, Renew. Sustain. Energy Rev. 60, 784 (2016)

    Article  Google Scholar 

  26. J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Eur. Phys. J. Plus 131, 149 (2016)

    Article  Google Scholar 

  27. L.G. Chen, H.J. Feng, Z.H. Xie, Entropy 18, 353 (2016)

    Article  ADS  Google Scholar 

  28. A. Dalkiran, E. Açikkalp, N. Caner, Physica A 453, 316 (2016)

    Article  ADS  Google Scholar 

  29. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, S.M. Pourkiaei, M. Khalili, Int. J. Ambient Energy 37, 363 (2016)

    Article  Google Scholar 

  30. B.A. Medjo Nouadje, P.A. Ngouateu Wouagfack, R. Tchinda, Int. J. Refrig. 67, 433 (2016)

    Article  Google Scholar 

  31. G. Gonca, Appl. Math. Model. 40, 6725 (2016)

    Article  MathSciNet  Google Scholar 

  32. G. Gonca, Energy Convers. Manag. 111, 205 (2016)

    Article  Google Scholar 

  33. G. Gonca, E. Dobrucali, J. Renew. Sustain. Energy 8, 025702 (2016)

    Article  Google Scholar 

  34. G. Gonca, B. Sahin, Appl. Math. Model. 40, 3764 (2016)

    Article  Google Scholar 

  35. S.C. Kaushik, R. Kumar, R. Arora, J. Therm. Eng. 2, 861 (2016)

    Google Scholar 

  36. M. Mozurkewich, R.S. Berry, Proc. Natl. Acad. Sci. USA 78, 1986 (1981)

    Article  ADS  Google Scholar 

  37. M. Mozurkewich, R.S. Berry, J. Appl. Phys. 53, 34 (1982)

    Article  ADS  Google Scholar 

  38. K.H. Hoffman, S.J. Watowich, R.S. Berry, J. Appl. Phys. 58, 2125 (1985)

    Article  ADS  Google Scholar 

  39. P. Blaudeck, K.H. Hoffman, Optimization of the power output for the compression and power stroke of the Diesel engine, in Proceedings of the ECOS’95 Conference, Vol. 2: Efficiency, Costs, Optimization and Environmental Impact of Energy Systems, edited by Y.A. Gögş, A. Öztürk, G. Tsatsaronis (ICAT, Istambul, Turkey, 1995) p. 754

  40. Y.L. Ge, L.G. Chen, F.R. Sun, Therm. Sci. 15, 975 (2011)

    Article  Google Scholar 

  41. Y.L. Ge, L.G. Chen, F.R. Sun, Sci. China: Phys. Mech. Astron. 40, 1115 (2010) (in Chinese)

    Google Scholar 

  42. K.Y. Teh, C.F. Edwards, Optimizing piston velocity profile for maximum work output from an IC engine, in Proceedings of ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, Illinois, USA (ASME, 2006) pp. 291--300, DOI:10.1115/IMECE2006-13622

  43. K.Y. Teh, C.F. Edwards, Trans. ASME J. Dyn. Syst. Meas. Control 130, 041008 (2008)

    Article  Google Scholar 

  44. K.Y. Teh, C.F. Edwards, An optimal control approach to minimizing entropy generation in an adiabatic IC engine with fixed compression ratio, in Proceedings of ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, Illinois, USA (ASME, 2006) pp. 19--27, DOI:10.1115/IMECE2006-13581

  45. K.Y. Teh, S.L. Miller, C.F. Edwards, Int. J. Engine Res. 9, 449 (2008)

    Article  Google Scholar 

  46. S. Ramakrishnan, K.Y. Teh, S.L. Miller, C.F. Edwards, Trans. AIAA J. Propulsion Power 27, 873 (2011)

    Article  Google Scholar 

  47. S. Ramakrishnan, C.F. Edwards, Energy 68, 844 (2014)

    Article  Google Scholar 

  48. S. Ramakrishnan, C.F. Edwards, Energy 72, 44 (2014)

    Article  Google Scholar 

  49. S. Ramakrishnan, C.F. Edwards, Energy 72, 58 (2014)

    Article  Google Scholar 

  50. S. Ramakrishnan, C.F. Edwards, Energy 100, 115 (2016)

    Article  Google Scholar 

  51. J.M. Lin, S.Q. Chang, Z.P. Xu, J. Non-Equilib. Thermodyn. 39, 159 (2014)

    Google Scholar 

  52. V. Badescu, Energy Convers. Manag. 101, 181 (2015)

    Article  Google Scholar 

  53. L.G. Chen, K. Ma, Y.L. Ge, F.R. Sun, Arab. J. Sci. Eng. 38, 341 (2013)

    Article  Google Scholar 

  54. A. de Vos, Am. J. Phys. 53, 570 (1985)

    Article  ADS  Google Scholar 

  55. L.G. Chen, F.R. Sun, C. Wu, J. Phys. D: Appl. Phys. 32, 99 (1999)

    Article  ADS  Google Scholar 

  56. M. Huleihil, B. Andresen, J. Appl. Phys. 100, 014911 (2006)

    Article  ADS  Google Scholar 

  57. X.Y. Qin, L.G. Chen, F.R. Sun, Appl. Therm. Eng. 28, 767 (2008)

    Article  Google Scholar 

  58. B. Andresen, J.M. Gordon, Int. J. Heat Fluid Flow 13, 294 (1992)

    Article  Google Scholar 

  59. V. Badescu, J. Non-Equilib. Thermodyn. 29, 53 (2004)

    Article  ADS  Google Scholar 

  60. S. Sieniutycz, P. Kuran, Int. J. Heat Mass Transf. 49, 3264 (2006)

    Article  Google Scholar 

  61. L.G. Chen, K. Ma, F.R. Sun, Int. J. Low-Carbon Technd. 8, 230 (2013)

    Article  Google Scholar 

  62. L.G. Chen, H.J. Song, F.R. Sun, C. Wu, Int. J. Ambient Energy 31, 81 (2010)

    Article  Google Scholar 

  63. S. Sieniutycz, Energy 34, 334 (2009)

    Article  Google Scholar 

  64. S.J. Xia, L.G. Chen, F.R. Sun, Energy 36, 633 (2011)

    Article  Google Scholar 

  65. L.G. Chen, H.J. Song, F.R. Sun, C. Wu, Int. J. Ambient Energy 31, 13 (2010)

    Article  Google Scholar 

  66. H.J. Song, L.G. Chen, F.R. Sun, J. Appl. Phys. 102, 094901 (2007)

    Article  ADS  Google Scholar 

  67. L.G. Chen, S.J. Xia, F.R. Sun, J. Appl. Phys. 105, 044907 (2009)

    Article  ADS  Google Scholar 

  68. L.G. Chen, K. Ma, F.R. Sun, J. Non-Equilib. Thermodyn. 36, 99 (2011)

    ADS  Google Scholar 

  69. H.J. Song, L.G. Chen, J. Li, F. Sun, C. Wu, J. Appl. Phys. 100, 124907 (2006)

    Article  ADS  Google Scholar 

  70. H.J. Song, L.G. Chen, F.R. Sun, Sci. China Ser. G: Phys. Mech. Astron. 51, 1272 (2008)

    Article  ADS  Google Scholar 

  71. L.G. Chen, H.J. Song, F.R. Sun, Appl. Math. Model. 34, 1710 (2010)

    Article  MathSciNet  Google Scholar 

  72. L.G. Chen, H.J. Song, F.R. Sun, S.B. Wang, Rev. Mex. Fis. 55, 55 (2009)

    Google Scholar 

  73. H.J. Song, L.G. Chen, F.R. Sun, S.B. Wang, J. Non-Equilib. Thermodyn. 33, 275 (2008)

    Article  ADS  Google Scholar 

  74. L.G. Chen, H.J. Song, F.R. Sun, S.B. Wang, C. Wu, Int. J. Ambient Energy 30, 137 (2009)

    Article  Google Scholar 

  75. J.M. Burzler, K.H. Hoffman, Optimal piston paths for Diesel engines, in Thermodynamics of Energy Conversion and Transport, edited by S. Sienuitycz, A. de Vos (Springer, New York, 2000) chapt. 7

  76. J.M. Burzler, Performance Optimal for Endoreversible Systems, PhD Thesis, University of Chemnitz, Germany (2002)

  77. S.J. Xia, L.G. Chen, F.R. Sun, Int. J. Therm. Sci. 51, 163 (2012)

    Article  Google Scholar 

  78. L.G. Chen, S.J. Xia, F.R. Sun, Math. Comput. Model. 54, 2051 (2011)

    Article  MathSciNet  Google Scholar 

  79. S.J. Xia, L.G. Chen, F.R. Sun, Sci. China Ser. G: Phys., Mech. Astron. 52, 708 (2009)

    Article  ADS  Google Scholar 

  80. Y.L. Ge, L.G. Chen, F.R. Sun, J. Energy Inst. 85, 140 (2012)

    Article  Google Scholar 

  81. K. Ma, L.G. Chen, F.R. Sun, Sci. China: Chem. 53, 917 (2010)

    Article  Google Scholar 

  82. K. Ma, L.G. Chen, F.R. Sun, J. Energy Inst. 86, 210 (2013)

    Article  Google Scholar 

  83. L.G. Chen, K. Ma, F.R. Sun, Int. J. Chem. React. Eng. 10, A68 (2012)

    Google Scholar 

  84. Y.L. Ge, L.G. Chen, F.R. Sun, Entropy 18, 139 (2016)

    Article  ADS  Google Scholar 

  85. Y.L. Ge, Finite Time Thermodynamic Analyses and Optimizations for Irreversible Internal Combustion Engine Cycles, PhD Dissertation, Naval University of Engineering, P. R. China (2011)

  86. C.F. Taylor, The Internal Combustion Engine in Theory and Practice (Volumes 1 and 2) (MIT, Cambridge, 1977)

  87. C.B. Biezeno, R. Grammel, Engineering Dynamics, Vol. 4 (Blackie, London, 1955) pp. 2--5

  88. B. Andresen, M.H. Rubin, R.S. Berry, J. Chem. Phys. 87, 2704 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Chen, L. & Sun, F. Maximum cycle work output optimization for generalized radiative law Otto cycle engines. Eur. Phys. J. Plus 131, 394 (2016). https://doi.org/10.1140/epjp/i2016-16394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16394-9

Navigation