Skip to main content
Log in

Dissipative particle dynamics simulation for the density currents of polymer fluids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, the two-dimensional lock-exchange density currents of polymer fluids are numerically investigated using dissipative particle dynamics (DPD) at the mesoscale particle level. A modified finitely extensible nonlinear elastic (FENE) chain model is chosen to describe the polymer system, which perfectly depicts not only the elastic tension but also the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Through the model and numerical simulation, we analyze the dynamics behavior of the density currents of polymer fluids. A comparison with its Newtonian counterpart suggests that the interface between two polymer fluids is more smoothed, and the front structure is different from the Newtonian case because the Kelvin-Helmholtz instability and cleft instability are suppressed by the polymer. Besides, we also probe the influences of polymer volume concentration, chain length and extensibility on the density currents. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the inhibiting effect of polymer on the density currents becomes more significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Simpson, Annu. Rev. Fluid Mech. 14, 213 (1982)

    Article  ADS  Google Scholar 

  2. J.E. Simpson, Gravity Currents: In the Environment and the Laboratory, 2nd edition (Cambridge University Press, Cambridge, 1997)

  3. R. Britter, J.E. Simpson, J. Fluid Mech. 88, 223 (1978)

    Article  ADS  Google Scholar 

  4. M.D. Patterson, J.E. Simpson, S.B. Dalziel, G.J.F. van Heijst, Phys. Fluids 18, 046601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Peng, C.B. Lee, Mod. Phys. Lett. B 24, 1369 (2010)

    Article  ADS  Google Scholar 

  6. V.K. Birman, B.A. Battandier, E. Meiburg, P.F. Linden, J. Fluid Mech. 577, 53 (2007)

    Article  ADS  Google Scholar 

  7. M.D. Patterson, J.E. Simpson, S.B. Dalziel, N. Nikiforakis, Int. J. Numer. Methods Fluids 47, 1221 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. R.N. Elias, P.L.B. Paraizo, A.L.G.A. Coutinho, Int. J. Numer. Methods Fluids 57, 1137 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. M.M. Nasr-Azadani, E. Meiburg, Comput. Fluids 45, 14 (2011)

    Article  MathSciNet  Google Scholar 

  10. K. Bhaganagar, J. Hydraul. Eng. 52, 386 (2014)

    Article  Google Scholar 

  11. A. Dai, Phys. Fluids 27, 076602 (2015)

    Article  ADS  Google Scholar 

  12. L.F.R. Espath, L.C. Pinto, S. Laizet, J.H. Silvestrini, Phys. Fluids 27, 056604 (2015)

    Article  ADS  Google Scholar 

  13. V.D. Federico, S. Malavasi, S. Cintoli, Meccanica 41, 207 (2006)

    Article  MathSciNet  Google Scholar 

  14. J.P. Pascal, Acta Mech. 162, 83 (2003)

    Article  Google Scholar 

  15. V. Di Federico, R. Archetti, S. Longo, J. Non-Newtonian Fluid Mech. 189, 31 (2012)

    Article  Google Scholar 

  16. V. Ciriello, S. Longo, L. Chiapponi, V. Di Federico, Proc. Environ. Sci. 25, 58 (2015)

    Article  Google Scholar 

  17. M.R. Chowdhury, F.Y. Testik, Fluid Dyn. Res. 44, 045502 (2012)

    Article  ADS  Google Scholar 

  18. V. Di Federico, R. Archetti, S. Longo, J. Non-Newtonian Fluid Mech. 177, 46 (2012)

    Article  Google Scholar 

  19. S. Longo, V. Di Federico, L. Chiapponi, R. Archetti, J. Fluid Mech. 731, R2 (2013)

    Article  ADS  Google Scholar 

  20. S. Longo, V. Di Federico, R. Archetti, L. Chiapponi, V. Ciriello, M. Ungarish, J. Non-Newtonian Fluid Mech. 201, 69 (2013)

    Article  Google Scholar 

  21. M.R. Jacobson, F.Y. Testik, Phys. Fluids 25, 016602 (2013)

    Article  ADS  Google Scholar 

  22. M.R. Jacobson, F.Y. Testik, Environ. Fluid Mech. 14, 541 (2014)

    Article  Google Scholar 

  23. V. Di Federico, S. Longo, L. Chiapponi, R. Archetti, V. Ciriello, Adv. Water Resour. 70, 65 (2014)

    Article  ADS  Google Scholar 

  24. S. Longo, V. Di Federico, L. Chiapponi, Environ. Fluid Mech. 15, 515 (2015)

    Article  Google Scholar 

  25. A. Tiwari, J. Abraham, Int. J. Numer. Methods Fluids 59, 519 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y.-G. Li, X.-G. Geng, X. Zhuang, L.-H. Wang, J. Ouyang, Eur. Phys. J. Plus 131, 103 (2016)

    Article  Google Scholar 

  27. W. Dzwinel, W. Alda, M. Pogoda, D.A. Yuen, Physica D 137, 157 (2000)

    Article  ADS  Google Scholar 

  28. K. Kadau, T.C. Germann, N.G. Hadjiconstantinou, P.S. Lomdahl, G. Dimonte, B.L. Holian, B.J. Alder, Proc. Natl. Acad. Sci. 101, 5851 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.L. Barber, K. Kadau, T.C. Germann, B.J. Alder, Eur. Phys. J. B 64, 271 (2008)

    Article  ADS  Google Scholar 

  30. L. Zhang, J. Ouyang, X.-H. Zhang, Microfluid. Nanofluid. 10, 809 (2011)

    Article  MathSciNet  Google Scholar 

  31. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)

    Article  ADS  Google Scholar 

  32. J.M.V.A. Koelman, P.J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993)

    Article  ADS  Google Scholar 

  33. G. Pan, C.W. Manke, J. Rheol. 46, 1221 (2002)

    Article  ADS  Google Scholar 

  34. P.V. Coveney, K.E. Novik, Phys. Rev. E 54, 5134 (1996)

    Article  ADS  Google Scholar 

  35. E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker, P. van der Schoot, Phys. Rev. E 55, 3124 (1997)

    Article  ADS  Google Scholar 

  36. S. Chen, N. Phan-Thien, X.J. Fan, B.C. Khoo, J. Non-Newtonian Fluid Mech. 118, 65 (2004)

    Article  Google Scholar 

  37. D. Pan, N. Phan-Thien, B.C. Khoo, J. Non-Newtonian Fluid Mech. 212, 63 (2014)

    Article  Google Scholar 

  38. Z. Li, G.-H. Hu, Z.-L. Wang, Y.-B. Ma, Z.-W. Zhou, Phys. Fluids 25, 072103 (2013)

    Article  ADS  Google Scholar 

  39. M.-B. Liu, P. Meakin, H. Huang, Phys Fluids 19, 033302 (2007)

    Article  ADS  Google Scholar 

  40. M.-B. Liu, P. Meakin, H. Huang, J. Comput. Phys. 222, 110 (2007)

    Article  ADS  Google Scholar 

  41. A. Tiwari, J. Abraham, Microfluid. Nanofluid. 4, 227 (2008)

    Article  Google Scholar 

  42. A. Tiwari, H. Reddy, S. Mukhopadhyay, J. Abraham, Phys. Rev. E 78, 016305 (2008)

    Article  ADS  Google Scholar 

  43. Y.-L. Zhu, H. Liu, Z.-Y. Lu, J. Chem. Phys. 136, 144903 (2012)

    Article  ADS  Google Scholar 

  44. M. Yiannourakou, B. Rousseau, N. Pannacci, B. Herzhaft, EPL 97, 34007 (2012)

    Article  ADS  Google Scholar 

  45. W. Dzwinel, D.A. Yuen, Mol. Simul. 22, 369 (1999)

    Article  Google Scholar 

  46. W. Dzwinel, W. Alda, D.A. Yuen, Mol. Simul. 22, 397 (1999)

    Article  Google Scholar 

  47. W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 12, 91 (2001)

    Article  ADS  Google Scholar 

  48. Z. Posel, B. Rousseau, M. Lísal, Mol. Simul. 40, 1274 (2014)

    Article  Google Scholar 

  49. Y. Kong, C.W. Manke, W.G. Madden, A.G. Schlijper, Int. J. Thermophys. 15, 1093 (1994)

    Article  ADS  Google Scholar 

  50. A.G. Schlijper, P.J. Hoogerbrugge, C.W. Manke, J. Rheol. 39, 567 (1995)

    Article  ADS  Google Scholar 

  51. P. Español, P.B. Warren, Europhys Lett. 30, 191 (1995)

    Article  ADS  Google Scholar 

  52. D.H. Rothman, J.M. Keller, J. Stat. Phys. 52, 1119 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  53. K.E. Novik, P.V. Coveney, Int. J. Mod. Phys. C 8, 909 (1997)

    Article  ADS  Google Scholar 

  54. K.E. Novik, P.V. Coveney, Phys. Rev. E 61, 435 (2000)

    Article  ADS  Google Scholar 

  55. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    Article  ADS  Google Scholar 

  56. H. Liu, Y.H. Xue, H.J. Qian, Z.Y. Lu, C.C. Sun, J. Chem. Phys. 129, 024902 (2008)

    Article  ADS  Google Scholar 

  57. A. AlSunaidi, W.K. den Otter, J.H.R. Clarke, Phil. Trans. R. Soc. London A 362, 1773 (2004)

    Article  ADS  Google Scholar 

  58. Y.-G. Li, X.-G. Geng, J. Ouyang, D.-Y. Zang, X. Zhuang, Microfluid. Nanofluid. 19, 941 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Geng, X., Liu, Z. et al. Dissipative particle dynamics simulation for the density currents of polymer fluids. Eur. Phys. J. Plus 131, 388 (2016). https://doi.org/10.1140/epjp/i2016-16388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16388-7

Navigation