Skip to main content
Log in

Making radioactive ion beams - Detecting reaction products

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We present a didactical overview of the methods for the production of radioactive ion beams (RIBs), discussing the main characteristics and associated advantages and drawbacks of the in-flight separation and isotope separation on-line methods. We include a short overview of present and planned facilities, focusing on Europe. In the second part of the paper a brief introduction on the detection of radiation is given, followed by a discussion of the specific problems related to radiation detection in measurements involving RIBs. A few illustrative examples of detection setups are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  2. I. Tanihata et al., Phys. Lett. B 160, 380 (1985)

    Article  ADS  Google Scholar 

  3. I. Tanihata, Eur. Phys. J. Plus 131, 90 (2016)

    Article  Google Scholar 

  4. K. Riisager, Phys. Scr. 2013, 014001 (2013)

    Article  Google Scholar 

  5. M.J.G. Borge, Phys. Scr. 2013, 014013 (2013)

    Article  Google Scholar 

  6. M. Pfützner, Phys. Scr. 2013, 014014 (2013)

    Article  Google Scholar 

  7. A. Bonaccorso, Phys. Scr. 2013, 014019 (2013)

    Article  Google Scholar 

  8. T. Otsuka Phys. Scr. 20130140072013

    Google Scholar 

  9. R. Kanungo, Phys. Scr. 2013, 014002 (2013)

    Article  Google Scholar 

  10. O. Sorlin, M.G. Porquet, Phys. Scr. 2013, 014003 (2013)

    Article  Google Scholar 

  11. R.V.F. Janssens, Phys. Scr. 2013, 014005 (2013)

    Article  Google Scholar 

  12. Y. Blumenfeld, T. Nilsson, P. Van Duppen, Phys. Scr. 2013, 014023 (2013)

    Article  Google Scholar 

  13. C. Fahlander, B. Jonson, Phys. Scr. 2013, 010301 (2013)

    Article  Google Scholar 

  14. G. Savard et al., Nucl. Instrum. Methods Phys. Res. B 266, 4086 (2008)

    Article  ADS  Google Scholar 

  15. Y.T. Oganessian et al., Nucl. Phys. A 701, 87 (2002)

    Article  ADS  Google Scholar 

  16. W.G. Lynch, Ann. Rev. Nucl. Part. Sci. 37, 493 (1987)

    Article  ADS  Google Scholar 

  17. J. Benlliure, The Euroschool Lectures on Physics with Exotic Beams, Vol. II (Springer, Berlin and Heidelberg, 2006) Chapt. Spallation Reactions in Applied and Fundamental Research, p. 191

  18. EURISOL Website, EURISOL brochure (2009)

  19. P. Decrock et al., Nucl. Instrum. Methods Phys. Res. B 58, 252 (1991)

    Article  ADS  Google Scholar 

  20. R.B. Moore, G. Rouleau, J. Mod. Opt. 39, 361 (1992)

    Article  ADS  Google Scholar 

  21. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)

    Article  ADS  Google Scholar 

  22. R.N. Wolf et al., Nucl. Instrum. Methods Phys. Res. A 686, 82 (2012)

    Article  ADS  Google Scholar 

  23. H.-J. Kluge, K. Blaum, F. Herfurth, W. Quint, Phys. Scr. 2003, 167 (2003)

    Article  Google Scholar 

  24. G. Bollen, The Euroschool Lectures on Physics with Exotic Beams, Vol. I (Springer, Berlin and Heidelberg, 2004) Chapt. Traps for Rare Isotopes, p. 169

  25. P. Delahaye et al., Eur. Phys. J. A 46, 421 (2010)

    Article  ADS  Google Scholar 

  26. N.A. Tahir et al., Nucl. Instrum. Methods Phys. Res. B 204, 282 (2003)

    Article  ADS  Google Scholar 

  27. M. Winkler et al., Nucl. Instrum. Methods Phys. Res. B 266, 4183 (2008)

    Article  ADS  Google Scholar 

  28. H. Geissel, H. Weick, M. Winkler, G. Münzenberg, M. Yavor, Nucl. Instrum. Methods Phys. Res. B 247, 368 (2006)

    Article  ADS  Google Scholar 

  29. P.T. Hosmer et al., Phys. Rev. Lett. 94, 112501 (2005)

    Article  ADS  Google Scholar 

  30. O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)

    Article  ADS  Google Scholar 

  31. O. Kofoed-Hansen, P. Kristensen, Phys. Rev. 82, 96 (1951)

    ADS  Google Scholar 

  32. R. Klapisch, R. Bernas, Nucl. Instrum. Methods 38, 291 (1965)

    Article  ADS  Google Scholar 

  33. H.L. Ravn, Phys. Rep. 54, 201 (1979)

    Article  ADS  Google Scholar 

  34. ISOLDE website http://isolde.web.cern.ch, accessed: 01-12-2015

  35. A. Herlert, Nucl. Phys. News 20, 5 (2010)

    Article  Google Scholar 

  36. The ISOLDE Collaboration (O. Kester et al.), Nucl. Instrum. Methods Phys. Res. B 204, 20 (2003)

    Article  ADS  Google Scholar 

  37. P. Van Duppen, K. Riisager, J. Phys. G: Nucl. Part. Phys. 38, 024005 (2011)

    Article  ADS  Google Scholar 

  38. A. Herlert, Y. Kadi, J. Phys. Conf. Ser. 312, 052010 (2011)

    Article  ADS  Google Scholar 

  39. P. Decrock et al., Phys. Rev. Lett. 67, 808 (1991)

    Article  ADS  Google Scholar 

  40. M. Huyse, R. Raabe, J. Phys. G: Nucl. Part. Phys. 38, 024001 (2011)

    Article  ADS  Google Scholar 

  41. A.C.C. Villari, Nucl. Phys. A 693, 465 (2001)

    Article  ADS  Google Scholar 

  42. GANIL website http://www.ganil-spiral2.eu, accessed: 01-12-2015

  43. A. Navin, F. de Oliveira Santos, P. Roussel-Chomaz, O. Sorlin, J. Phys. G: Nucl. Part. Phys. 38, 024004 (2011)

    Article  ADS  Google Scholar 

  44. M. Lewitowicz, J. Phys. Conf. Ser. 312, 052014 (2011)

    Article  ADS  Google Scholar 

  45. A. Andrighetto et al., Nucl. Phys. A 834, 754c (2010)

    Article  ADS  Google Scholar 

  46. LNL website http://www.lnl.infn.it/index.php/en/, accessed: 01-12-2015

  47. SCKCEN, ISOL@MYRRHA: Fundamental physics at MYRRHA (2011)

  48. SCKCEN, MYRRHA: Multi-purpose hybrid research reactor for high-tech applications (2014)

  49. G.C. Ball et al., J. Phys. G: Nucl. Part. Phys. 38, 024003 (2011)

    Article  ADS  Google Scholar 

  50. J. Dilling, R. Krücken, L. Merminga, ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program (Springer Netherlands, Dordrecht, 2014) Chapt. ARIEL overview, p. 253

  51. M. Lebois, P. Bricault, J. Phys. Conf. Ser. 312, 052013 (2011)

    Article  ADS  Google Scholar 

  52. Y. Blumenfeld, P. Butler, J. Cornell, G. Fortuna, M. Lindroos, Int. J. Mod. Phys. E 18, 1960 (2009)

    Article  ADS  Google Scholar 

  53. I. Tanihata, Hyperfine Interact. 21, 251 (1985)

    Article  ADS  Google Scholar 

  54. R. Anne, Nucl. Instrum. Methods Phys. Res. B 126, 279 (1997)

    Article  ADS  Google Scholar 

  55. R. Anne, D. Bazin, A.C. Mueller, J.C. Jacmart, M. Langevin, Nucl. Instrum. Methods Phys. Res. A 257, 215 (1987)

    Article  ADS  Google Scholar 

  56. R. Anne, A.C. Mueller, Nucl. Instrum. Methods Phys. Res. B 70, 276 (1992)

    Article  ADS  Google Scholar 

  57. GSI website http://www.gsi.de/en, accessed: 01-12-2015

  58. R. Schneider et al., Z. Phys. A 348, 241 (1994)

    Article  ADS  Google Scholar 

  59. C. Engelmann et al., Z. Phys. A 352, 351 (1995)

    Article  ADS  Google Scholar 

  60. M. Steck et al., Phys. Scr. 2003, 64 (2003)

    Article  Google Scholar 

  61. FAIR publications http://www.fair-center.eu/for-users/publications/fair-publications.html, accessed: 15-12-2015

  62. M. Thoennessen, Nucl. Phys. A 834, 688c (2010)

    Article  ADS  Google Scholar 

  63. T. Suda, J. Phys.: Conf. Ser. 267, 012008 (2011)

    ADS  Google Scholar 

  64. A. Obertelli et al., JPS Conf. Proc. 6, 010014 (2015)

    Google Scholar 

  65. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin, 1994)

  66. G.F. Knoll, Radiation Detection and Measurement, 4th edition (Wiley, Hoboken, 2011)

  67. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

  68. G. Charpak, R. Bouclier, T. Bressani, J. Favier, Č. Zupančič, Nucl. Instrum. Methods 62, 262 (1968)

    Article  ADS  Google Scholar 

  69. F. Sauli, Nucl. Instrum. Methods Phys. Res. A 477, 1 (2002)

    Article  ADS  Google Scholar 

  70. Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996)

    Article  ADS  Google Scholar 

  71. F. Sauli, Nucl. Instrum. Methods Phys. Res. A 386, 531 (1997)

    Article  ADS  Google Scholar 

  72. J.A. MacDonald (Editor) The Time Projection Chamber in AIP Conf Proc., Vol. 108 (AIP, New York, 1984)

  73. A.C. Melissinos, Experiments in Modern Physics (Academic Press, Cambridge, MA, 1966)

  74. D. Renker, E. Lorenz, J. Instrum. 4, P04004 (2009)

    Article  Google Scholar 

  75. P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 809, 130 (2016)

    Article  Google Scholar 

  76. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel, Appl. Phys. Lett. 79, 1573 (2001)

    Article  ADS  Google Scholar 

  77. F. Bosch, The Euroschool Lectures on Physics with Exotic Beams, Vol. I (Springer, Berlin and Heidelberg, 2004) Chapt. Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei, p. 137

  78. R. Neugart, G. Neyens, The Euroschool Lectures on Physics with Exotic Beams, Vol. II (Springer, Berlin and Heidelberg, 2006) Chapt. Nuclear Moments, p. 137

  79. A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004)

    Article  ADS  Google Scholar 

  80. K. Krane, Introductory Nuclear Physics (Wiley, Hoboken, 1987)

  81. W.N. Catford, The Euroschool Lectures on Physics with Exotic Beams, Vol. IV (Springer, Berlin and Heidelberg, 2014) Chapt. What Can We Learn from Transfer, and How Is Best to Do It?, p. 67

  82. G.L. Wilson, Investigating the Evolution of the Nuclear Magic Numbers via Single-Neutron Transfer Populating 26Na, PhD Thesis, University of Surrey (2012)

  83. J. Diriken et al., Phys. Lett. B 736, 533 (2014)

    Article  ADS  Google Scholar 

  84. J.S. Winfield, W.N. Catford, O.N.A, Nucl. Instrum. Methods Phys. Res. A 396, 147 (1997)

    Article  ADS  Google Scholar 

  85. E. Pollacco et al., Eur. Phys. J. A 25 s01, 287 (2005)

    Article  Google Scholar 

  86. MUST2 publications, http://must2.cea.fr/index.php?id=11&ref=1, accessed: 01-12-2015

  87. H. Savajols, Nucl. Instrum. Methods Phys. Res. B 204, 146 (2003)

    Article  ADS  Google Scholar 

  88. C. Schmitt et al., Nucl. Instrum. Methods Phys. Res. A 621, 558 (2010)

    Article  ADS  Google Scholar 

  89. F. Azaiez, Nucl. Phys. A 654, 1003c (1999)

    Article  ADS  Google Scholar 

  90. J. Simpson et al., Acta Phys. Hung. New Ser. Heavy Ion Phys. 11, 159 (2000)

    Google Scholar 

  91. W.N. Catford et al., AIP Conf. Proc. 680, 329 (2003)

    Article  ADS  Google Scholar 

  92. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    Article  ADS  Google Scholar 

  93. I.Y. Lee et al., Nucl. Phys. A 746, 255 (2004)

    Article  ADS  Google Scholar 

  94. N. Warr et al., Eur. Phys. J. A 49, 40 (2013)

    Article  ADS  Google Scholar 

  95. V. Bildstein et al., Eur. Phys. J. A 48, 85 (2012)

    Article  ADS  Google Scholar 

  96. K. Nowak et al., Phys. Rev. C 93, 044335 (2016)

    Article  ADS  Google Scholar 

  97. C.A. Diget et al., J. Instrum. 6, P02005 (2011)

    Article  Google Scholar 

  98. C.E. Svensson et al., J. Phys. G: Nucl. Part. Phys. 31, S1663 (2005)

    Article  Google Scholar 

  99. B. Davids, C.N. Davids, Nucl. Instrum. Methods Phys. Res. A 544, 565 (2005)

    Article  ADS  Google Scholar 

  100. The FAZIA Collaboration (R. Bougault et al.), Eur. Phys. J. A 50, 47 (2014)

    Article  Google Scholar 

  101. D. Beaumel, Nucl. Instrum. Methods Phys. Res. B 317, 661 (2013)

    Article  ADS  Google Scholar 

  102. M. Assié et al., Eur. Phys. J. A 51, 11 (2015)

    Article  ADS  Google Scholar 

  103. A.H. Wuosmaa, J.P. Schiffer, B.B. Back, C.J. Lister, K.E. Rehm, Nucl. Instrum. Methods Phys. Res. A 580, 1290 (2007)

    Article  ADS  Google Scholar 

  104. J.C. Lighthall et al., Nucl. Instrum. Methods Phys. Res. A 622, 97 (2010)

    Article  ADS  Google Scholar 

  105. ACTAR TPC Collaboration, ACTAR TPC Conceptual Design Report (2012)

  106. E. Pollacco et al., Phys. Proc. 37, 1799 (2012)

    Article  ADS  Google Scholar 

  107. B. Mei et al., Phys. Rev. C 92, 035803 (2015)

    Article  ADS  Google Scholar 

  108. M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Raabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raabe, R. Making radioactive ion beams - Detecting reaction products. Eur. Phys. J. Plus 131, 362 (2016). https://doi.org/10.1140/epjp/i2016-16362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16362-5

Navigation