Making radioactive ion beams - Detecting reaction products

Regular Article
Part of the following topical collections:
  1. Focus Point on Rewriting Nuclear Physics textbooks: 30 years with radioactive ion beam physics

Abstract.

We present a didactical overview of the methods for the production of radioactive ion beams (RIBs), discussing the main characteristics and associated advantages and drawbacks of the in-flight separation and isotope separation on-line methods. We include a short overview of present and planned facilities, focusing on Europe. In the second part of the paper a brief introduction on the detection of radiation is given, followed by a discussion of the specific problems related to radiation detection in measurements involving RIBs. A few illustrative examples of detection setups are presented.

References

  1. 1.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    I. Tanihata et al., Phys. Lett. B 160, 380 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    I. Tanihata, Eur. Phys. J. Plus 131, 90 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Riisager, Phys. Scr. 2013, 014001 (2013)CrossRefGoogle Scholar
  5. 5.
    M.J.G. Borge, Phys. Scr. 2013, 014013 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Pfützner, Phys. Scr. 2013, 014014 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Bonaccorso, Phys. Scr. 2013, 014019 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Otsuka Phys. Scr. 20130140072013Google Scholar
  9. 9.
    R. Kanungo, Phys. Scr. 2013, 014002 (2013)CrossRefGoogle Scholar
  10. 10.
    O. Sorlin, M.G. Porquet, Phys. Scr. 2013, 014003 (2013)CrossRefGoogle Scholar
  11. 11.
    R.V.F. Janssens, Phys. Scr. 2013, 014005 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Blumenfeld, T. Nilsson, P. Van Duppen, Phys. Scr. 2013, 014023 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Fahlander, B. Jonson, Phys. Scr. 2013, 010301 (2013)CrossRefGoogle Scholar
  14. 14.
    G. Savard et al., Nucl. Instrum. Methods Phys. Res. B 266, 4086 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Y.T. Oganessian et al., Nucl. Phys. A 701, 87 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    W.G. Lynch, Ann. Rev. Nucl. Part. Sci. 37, 493 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    J. Benlliure, The Euroschool Lectures on Physics with Exotic Beams, Vol. II (Springer, Berlin and Heidelberg, 2006) Chapt. Spallation Reactions in Applied and Fundamental Research, p. 191Google Scholar
  18. 18.
    EURISOL Website, EURISOL brochure (2009)Google Scholar
  19. 19.
    P. Decrock et al., Nucl. Instrum. Methods Phys. Res. B 58, 252 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    R.B. Moore, G. Rouleau, J. Mod. Opt. 39, 361 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    R.N. Wolf et al., Nucl. Instrum. Methods Phys. Res. A 686, 82 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    H.-J. Kluge, K. Blaum, F. Herfurth, W. Quint, Phys. Scr. 2003, 167 (2003)CrossRefGoogle Scholar
  24. 24.
    G. Bollen, The Euroschool Lectures on Physics with Exotic Beams, Vol. I (Springer, Berlin and Heidelberg, 2004) Chapt. Traps for Rare Isotopes, p. 169Google Scholar
  25. 25.
    P. Delahaye et al., Eur. Phys. J. A 46, 421 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    N.A. Tahir et al., Nucl. Instrum. Methods Phys. Res. B 204, 282 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Winkler et al., Nucl. Instrum. Methods Phys. Res. B 266, 4183 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H. Geissel, H. Weick, M. Winkler, G. Münzenberg, M. Yavor, Nucl. Instrum. Methods Phys. Res. B 247, 368 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P.T. Hosmer et al., Phys. Rev. Lett. 94, 112501 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    O. Kofoed-Hansen, P. Kristensen, Phys. Rev. 82, 96 (1951)ADSGoogle Scholar
  32. 32.
    R. Klapisch, R. Bernas, Nucl. Instrum. Methods 38, 291 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    H.L. Ravn, Phys. Rep. 54, 201 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    ISOLDE website http://isolde.web.cern.ch, accessed: 01-12-2015
  35. 35.
    A. Herlert, Nucl. Phys. News 20, 5 (2010)CrossRefGoogle Scholar
  36. 36.
    The ISOLDE Collaboration (O. Kester et al.), Nucl. Instrum. Methods Phys. Res. B 204, 20 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    P. Van Duppen, K. Riisager, J. Phys. G: Nucl. Part. Phys. 38, 024005 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A. Herlert, Y. Kadi, J. Phys. Conf. Ser. 312, 052010 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    P. Decrock et al., Phys. Rev. Lett. 67, 808 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    M. Huyse, R. Raabe, J. Phys. G: Nucl. Part. Phys. 38, 024001 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    A.C.C. Villari, Nucl. Phys. A 693, 465 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    GANIL website http://www.ganil-spiral2.eu, accessed: 01-12-2015
  43. 43.
    A. Navin, F. de Oliveira Santos, P. Roussel-Chomaz, O. Sorlin, J. Phys. G: Nucl. Part. Phys. 38, 024004 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    M. Lewitowicz, J. Phys. Conf. Ser. 312, 052014 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A. Andrighetto et al., Nucl. Phys. A 834, 754c (2010)ADSCrossRefGoogle Scholar
  46. 46.
    LNL website http://www.lnl.infn.it/index.php/en/, accessed: 01-12-2015
  47. 47.
    SCKCEN, ISOL@MYRRHA: Fundamental physics at MYRRHA (2011)Google Scholar
  48. 48.
    SCKCEN, MYRRHA: Multi-purpose hybrid research reactor for high-tech applications (2014)Google Scholar
  49. 49.
    G.C. Ball et al., J. Phys. G: Nucl. Part. Phys. 38, 024003 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    J. Dilling, R. Krücken, L. Merminga, ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program (Springer Netherlands, Dordrecht, 2014) Chapt. ARIEL overview, p. 253Google Scholar
  51. 51.
    M. Lebois, P. Bricault, J. Phys. Conf. Ser. 312, 052013 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Blumenfeld, P. Butler, J. Cornell, G. Fortuna, M. Lindroos, Int. J. Mod. Phys. E 18, 1960 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    I. Tanihata, Hyperfine Interact. 21, 251 (1985)ADSCrossRefGoogle Scholar
  54. 54.
    R. Anne, Nucl. Instrum. Methods Phys. Res. B 126, 279 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    R. Anne, D. Bazin, A.C. Mueller, J.C. Jacmart, M. Langevin, Nucl. Instrum. Methods Phys. Res. A 257, 215 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    R. Anne, A.C. Mueller, Nucl. Instrum. Methods Phys. Res. B 70, 276 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    GSI website http://www.gsi.de/en, accessed: 01-12-2015
  58. 58.
    R. Schneider et al., Z. Phys. A 348, 241 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    C. Engelmann et al., Z. Phys. A 352, 351 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    M. Steck et al., Phys. Scr. 2003, 64 (2003)CrossRefGoogle Scholar
  61. 61.
  62. 62.
    M. Thoennessen, Nucl. Phys. A 834, 688c (2010)ADSCrossRefGoogle Scholar
  63. 63.
    T. Suda, J. Phys.: Conf. Ser. 267, 012008 (2011)ADSGoogle Scholar
  64. 64.
    A. Obertelli et al., JPS Conf. Proc. 6, 010014 (2015)Google Scholar
  65. 65.
    W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin, 1994)Google Scholar
  66. 66.
    G.F. Knoll, Radiation Detection and Measurement, 4th edition (Wiley, Hoboken, 2011)Google Scholar
  67. 67.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)Google Scholar
  68. 68.
    G. Charpak, R. Bouclier, T. Bressani, J. Favier, Č. Zupančič, Nucl. Instrum. Methods 62, 262 (1968)ADSCrossRefGoogle Scholar
  69. 69.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 477, 1 (2002)ADSCrossRefGoogle Scholar
  70. 70.
    Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996)ADSCrossRefGoogle Scholar
  71. 71.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 386, 531 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    J.A. MacDonald (Editor) The Time Projection Chamber in AIP Conf Proc., Vol. 108 (AIP, New York, 1984)Google Scholar
  73. 73.
    A.C. Melissinos, Experiments in Modern Physics (Academic Press, Cambridge, MA, 1966)Google Scholar
  74. 74.
    D. Renker, E. Lorenz, J. Instrum. 4, P04004 (2009)CrossRefGoogle Scholar
  75. 75.
    P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 809, 130 (2016)CrossRefGoogle Scholar
  76. 76.
    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel, Appl. Phys. Lett. 79, 1573 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    F. Bosch, The Euroschool Lectures on Physics with Exotic Beams, Vol. I (Springer, Berlin and Heidelberg, 2004) Chapt. Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei, p. 137Google Scholar
  78. 78.
    R. Neugart, G. Neyens, The Euroschool Lectures on Physics with Exotic Beams, Vol. II (Springer, Berlin and Heidelberg, 2006) Chapt. Nuclear Moments, p. 137Google Scholar
  79. 79.
    A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    K. Krane, Introductory Nuclear Physics (Wiley, Hoboken, 1987)Google Scholar
  81. 81.
    W.N. Catford, The Euroschool Lectures on Physics with Exotic Beams, Vol. IV (Springer, Berlin and Heidelberg, 2014) Chapt. What Can We Learn from Transfer, and How Is Best to Do It?, p. 67Google Scholar
  82. 82.
    G.L. Wilson, Investigating the Evolution of the Nuclear Magic Numbers via Single-Neutron Transfer Populating 26Na, PhD Thesis, University of Surrey (2012)Google Scholar
  83. 83.
    J. Diriken et al., Phys. Lett. B 736, 533 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    J.S. Winfield, W.N. Catford, O.N.A, Nucl. Instrum. Methods Phys. Res. A 396, 147 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    E. Pollacco et al., Eur. Phys. J. A 25 s01, 287 (2005)CrossRefGoogle Scholar
  86. 86.
    MUST2 publications, http://must2.cea.fr/index.php?id=11&ref=1, accessed: 01-12-2015
  87. 87.
    H. Savajols, Nucl. Instrum. Methods Phys. Res. B 204, 146 (2003)ADSCrossRefGoogle Scholar
  88. 88.
    C. Schmitt et al., Nucl. Instrum. Methods Phys. Res. A 621, 558 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    F. Azaiez, Nucl. Phys. A 654, 1003c (1999)ADSCrossRefGoogle Scholar
  90. 90.
    J. Simpson et al., Acta Phys. Hung. New Ser. Heavy Ion Phys. 11, 159 (2000)Google Scholar
  91. 91.
    W.N. Catford et al., AIP Conf. Proc. 680, 329 (2003)ADSCrossRefGoogle Scholar
  92. 92.
    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    I.Y. Lee et al., Nucl. Phys. A 746, 255 (2004)ADSCrossRefGoogle Scholar
  94. 94.
    N. Warr et al., Eur. Phys. J. A 49, 40 (2013)ADSCrossRefGoogle Scholar
  95. 95.
    V. Bildstein et al., Eur. Phys. J. A 48, 85 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    K. Nowak et al., Phys. Rev. C 93, 044335 (2016)ADSCrossRefGoogle Scholar
  97. 97.
    C.A. Diget et al., J. Instrum. 6, P02005 (2011)CrossRefGoogle Scholar
  98. 98.
    C.E. Svensson et al., J. Phys. G: Nucl. Part. Phys. 31, S1663 (2005)CrossRefGoogle Scholar
  99. 99.
    B. Davids, C.N. Davids, Nucl. Instrum. Methods Phys. Res. A 544, 565 (2005)ADSCrossRefGoogle Scholar
  100. 100.
    The FAZIA Collaboration (R. Bougault et al.), Eur. Phys. J. A 50, 47 (2014)CrossRefGoogle Scholar
  101. 101.
    D. Beaumel, Nucl. Instrum. Methods Phys. Res. B 317, 661 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    M. Assié et al., Eur. Phys. J. A 51, 11 (2015)ADSCrossRefGoogle Scholar
  103. 103.
    A.H. Wuosmaa, J.P. Schiffer, B.B. Back, C.J. Lister, K.E. Rehm, Nucl. Instrum. Methods Phys. Res. A 580, 1290 (2007)ADSCrossRefGoogle Scholar
  104. 104.
    J.C. Lighthall et al., Nucl. Instrum. Methods Phys. Res. A 622, 97 (2010)ADSCrossRefGoogle Scholar
  105. 105.
    ACTAR TPC Collaboration, ACTAR TPC Conceptual Design Report (2012)Google Scholar
  106. 106.
    E. Pollacco et al., Phys. Proc. 37, 1799 (2012)ADSCrossRefGoogle Scholar
  107. 107.
    B. Mei et al., Phys. Rev. C 92, 035803 (2015)ADSCrossRefGoogle Scholar
  108. 108.
    M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.KU LeuvenInstituut voor Kern-en StralingsfysicaLeuvenBelgium

Personalised recommendations