Global properties of atomic nuclei

Masses, radii and modern methods to measure them
Review
Part of the following topical collections:
  1. Focus Point on Rewriting Nuclear Physics textbooks: 30 years with radioactive ion beam physics

Abstract.

The global properties of atomic nuclei, namely their masses and radii, provide important input for the understanding of the nuclear interaction. The experimental methods addressing these nuclear properties have evolved a lot in the last 30 years. Many techniques have been refined and new ones have been developed, allowing to push the limits of sensitivity and precision. This, in turn, has given access to very short-lived nuclei and has helped to probe the strong force in the nuclear medium in much finer detail than before. This paper will summarise the general features of nuclear masses and radii, will describe briefly methods to measure these properties for stable isotopes, and will concentrate on state-of-the-art techniques devoted to their investigations in radionuclides.

References

  1. 1.
    G. Hagen et al., Nat. Phys. 12, 186 (2016)CrossRefGoogle Scholar
  2. 2.
    R.C. Barrett, D.F. Jackson, Nuclear sizes and structure (1977)Google Scholar
  3. 3.
    S.G. Nilsson, I. Ragnarsson, Shapes and shells in nuclear structure (1995)Google Scholar
  4. 4.
    K.S. Krane, Introductory nuclear physics (1988)Google Scholar
  5. 5.
    T. Suzuki, A. Ozawa, I. Tanihata, Nucl. Phys. A 693, 32 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    X. Roca-Maza et al., Phys. Rev. C 78, 044332 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Fricke et al., At. Data Nucl. Data Tables 60, 177 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    P.L. Lee et al., Phys. Rev. C 17, 1859 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    J. Bonn et al., Z. Phys. A 203, 203 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Hahn et al., Nucl. Phys. A 314, 361 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    C. Günther et al., Phys. Rev. C 27, 816 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    G. Fricke, K. Heilig, Nuclear charge radii, in Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, edited by H. Schopper, Vol. 20 (2004) 1Google Scholar
  13. 13.
    I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Tabor et al., Phys. Rev. C 11, 198 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    C.J. Batty, Experimental methods for studying nuclear density distributions, in Advances in Nuclear Physics, edited by J.W. Negele, (1989) 1Google Scholar
  16. 16.
    C.J. Batty et al., Nucl. Phys. A 322, 445 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    P. Lubinski et al., Phys. Rev. Lett. 73, 24 (1994)CrossRefGoogle Scholar
  19. 19.
    G. Audi et al., Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  20. 20.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    C.Thibault, D. Lunney, J.M. Pearson, Rev. Mod. Phys. 75, 1021 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    C. Scholz, F. Zetsche, B. Povh, K. Rith, Particles and Nuclei (2008)Google Scholar
  23. 23.
    Y. Qian, Z. Ren, Nucl. Phys. A 945, 134 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    W.H. King, Isotope Shifts in Atomic Spectra (1984)Google Scholar
  25. 25.
    H. Kopfermann, Nuclear moments (1969)Google Scholar
  26. 26.
    E.C. Seltzer, Phys.l Rev. A 188, 1916 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    G.K. Woodgate, Elementary Atomic Structure (1980)Google Scholar
  28. 28.
    I.D. Moore, P. Campbell, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    T.E. Cocolios et al., Phys. Rev. Lett. 106, 052503 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    H.-J. Kluge, Hyperfine Interact. 196, 295 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    K. Flanagan, B. Cheal, J. Phys. G 37, 11 (2010)Google Scholar
  32. 32.
    A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    D. Yordanov et al., Phys. Rev. Lett. 108, 042504 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S.R. Elliott et al., Phys. Rev. Lett. 76, 1031 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    C. Brandau et al., Phys. Rev. Lett. 100, 073201 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    M.N. Andronenko, P. Egelhof, G.D. Alkhazov et al., Eur. Phys. J. A 15, 27 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D.T. Khoa L. Xuan Chung, O.A. Kiselev, P. Egelhof, Phys. Rev. C 92, 034608 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Y.E. Penionzhkevich, Hyperfine Interact. 132, 265 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Y.A. Litvinov et al., Acta Phys. Pol. B 41, 511 (2010)Google Scholar
  41. 41.
    G. Mnzenberg, B. Franzke, H. Geissel, Mass Spectrom. Rev. 27, 428 (2008)CrossRefGoogle Scholar
  42. 42.
    H. Xu, Y. Zhang, Y.A. Litvinov, JPS Conf. Proc. 6, 010019 (2015)Google Scholar
  43. 43.
    Y.A. Litvinov et al., Nucl. Phys. A 756, 3 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S. Kreim et al., Nucl. Instrum. Methods Phys. Res. B 317, 492 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    H. Wollnik, Int. J. Mass Spectrom. 349-350, 38 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    H. Savajols, Hyperfine Interact. 132, 245 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    H. Savajols et al., Eur. Phys. J. A 25,s01, 23 (2005) DOI:10.1140/epjad/i2005-06-189-6 CrossRefGoogle Scholar
  51. 51.
    H. Wollnik, M. Przewloka, Int. J. Mass Spectrom. 96, 267 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    Ch. Scheidenberger, W.R. Plass, T. Dickel, Int. J. Mass Spectrom. 349-350, 134 (2013)CrossRefGoogle Scholar
  53. 53.
    R. Wolf et al., Nucl. Instrum. Methods Phys. Res. 686, 82 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    F. Wienholtz et al., Phys. Scr. T166, 014068 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    W.R. Plass, T. Dickel et al., Nucl. Instrum. Methods Phys. Res. A 777, 172 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    W.R. Plass, T. Dickel, et al., Nucl. Instrum. Methods Phys. Res. B 317, 457 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    M. Wada, Y. Ishida, H. Wollnik, Nucl. Instrum. Methods Phys. Res. B 241, 983 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Ito, P. Schury, M. Wada et al., Nucl. Instrum. Methods Phys. Res. B 335, 39 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    F. Wienholtz et al., Nature 498, 346 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Experimental Physics DepartmentCERNGenevaSwitzerland

Personalised recommendations