Skip to main content
Log in

Global properties of atomic nuclei

Masses, radii and modern methods to measure them

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The global properties of atomic nuclei, namely their masses and radii, provide important input for the understanding of the nuclear interaction. The experimental methods addressing these nuclear properties have evolved a lot in the last 30 years. Many techniques have been refined and new ones have been developed, allowing to push the limits of sensitivity and precision. This, in turn, has given access to very short-lived nuclei and has helped to probe the strong force in the nuclear medium in much finer detail than before. This paper will summarise the general features of nuclear masses and radii, will describe briefly methods to measure these properties for stable isotopes, and will concentrate on state-of-the-art techniques devoted to their investigations in radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hagen et al., Nat. Phys. 12, 186 (2016)

    Article  Google Scholar 

  2. R.C. Barrett, D.F. Jackson, Nuclear sizes and structure (1977)

  3. S.G. Nilsson, I. Ragnarsson, Shapes and shells in nuclear structure (1995)

  4. K.S. Krane, Introductory nuclear physics (1988)

  5. T. Suzuki, A. Ozawa, I. Tanihata, Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

  6. X. Roca-Maza et al., Phys. Rev. C 78, 044332 (2008)

    Article  ADS  Google Scholar 

  7. G. Fricke et al., At. Data Nucl. Data Tables 60, 177 (1995)

    Article  ADS  Google Scholar 

  8. P.L. Lee et al., Phys. Rev. C 17, 1859 (1978)

    Article  ADS  Google Scholar 

  9. J. Bonn et al., Z. Phys. A 203, 203 (1976)

    Article  ADS  Google Scholar 

  10. A.A. Hahn et al., Nucl. Phys. A 314, 361 (1979)

    Article  ADS  Google Scholar 

  11. C. Günther et al., Phys. Rev. C 27, 816 (1983)

    Article  ADS  Google Scholar 

  12. G. Fricke, K. Heilig, Nuclear charge radii, in Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, edited by H. Schopper, Vol. 20 (2004) 1

  13. I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  14. S.L. Tabor et al., Phys. Rev. C 11, 198 (1975)

    Article  ADS  Google Scholar 

  15. C.J. Batty, Experimental methods for studying nuclear density distributions, in Advances in Nuclear Physics, edited by J.W. Negele, (1989) 1

  16. C.J. Batty et al., Nucl. Phys. A 322, 445 (1979)

    Article  ADS  Google Scholar 

  17. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  18. P. Lubinski et al., Phys. Rev. Lett. 73, 24 (1994)

    Article  Google Scholar 

  19. G. Audi et al., Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  20. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  21. C.Thibault, D. Lunney, J.M. Pearson, Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  22. C. Scholz, F. Zetsche, B. Povh, K. Rith, Particles and Nuclei (2008)

  23. Y. Qian, Z. Ren, Nucl. Phys. A 945, 134 (2016)

    Article  ADS  Google Scholar 

  24. W.H. King, Isotope Shifts in Atomic Spectra (1984)

  25. H. Kopfermann, Nuclear moments (1969)

  26. E.C. Seltzer, Phys.l Rev. A 188, 1916 (1969)

    Article  ADS  Google Scholar 

  27. G.K. Woodgate, Elementary Atomic Structure (1980)

  28. I.D. Moore, P. Campbell, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  29. T.E. Cocolios et al., Phys. Rev. Lett. 106, 052503 (2011)

    Article  ADS  Google Scholar 

  30. H.-J. Kluge, Hyperfine Interact. 196, 295 (2010)

    Article  ADS  Google Scholar 

  31. K. Flanagan, B. Cheal, J. Phys. G 37, 11 (2010)

    Google Scholar 

  32. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  33. D. Yordanov et al., Phys. Rev. Lett. 108, 042504 (2012)

    Article  ADS  Google Scholar 

  34. S.R. Elliott et al., Phys. Rev. Lett. 76, 1031 (1996)

    Article  ADS  Google Scholar 

  35. C. Brandau et al., Phys. Rev. Lett. 100, 073201 (2008)

    Article  ADS  Google Scholar 

  36. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  37. M.N. Andronenko, P. Egelhof, G.D. Alkhazov et al., Eur. Phys. J. A 15, 27 (2002)

    Article  ADS  Google Scholar 

  38. D.T. Khoa L. Xuan Chung, O.A. Kiselev, P. Egelhof, Phys. Rev. C 92, 034608 (2015)

    Article  ADS  Google Scholar 

  39. Y.E. Penionzhkevich, Hyperfine Interact. 132, 265 (2001)

    Article  ADS  Google Scholar 

  40. Y.A. Litvinov et al., Acta Phys. Pol. B 41, 511 (2010)

    Google Scholar 

  41. G. Mnzenberg, B. Franzke, H. Geissel, Mass Spectrom. Rev. 27, 428 (2008)

    Article  Google Scholar 

  42. H. Xu, Y. Zhang, Y.A. Litvinov, JPS Conf. Proc. 6, 010019 (2015)

    Google Scholar 

  43. Y.A. Litvinov et al., Nucl. Phys. A 756, 3 (2005)

    Article  ADS  Google Scholar 

  44. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  45. S. Kreim et al., Nucl. Instrum. Methods Phys. Res. B 317, 492 (2013)

    Article  ADS  Google Scholar 

  46. M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)

    Article  ADS  Google Scholar 

  47. S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)

    Article  ADS  Google Scholar 

  48. H. Wollnik, Int. J. Mass Spectrom. 349-350, 38 (2013)

    Article  ADS  Google Scholar 

  49. H. Savajols, Hyperfine Interact. 132, 245 (2001)

    Article  ADS  Google Scholar 

  50. H. Savajols et al., Eur. Phys. J. A 25,s01, 23 (2005) DOI:10.1140/epjad/i2005-06-189-6

    Article  Google Scholar 

  51. H. Wollnik, M. Przewloka, Int. J. Mass Spectrom. 96, 267 (1990)

    Article  ADS  Google Scholar 

  52. Ch. Scheidenberger, W.R. Plass, T. Dickel, Int. J. Mass Spectrom. 349-350, 134 (2013)

    Article  Google Scholar 

  53. R. Wolf et al., Nucl. Instrum. Methods Phys. Res. 686, 82 (2012)

    Article  ADS  Google Scholar 

  54. F. Wienholtz et al., Phys. Scr. T166, 014068 (2015)

    Article  ADS  Google Scholar 

  55. W.R. Plass, T. Dickel et al., Nucl. Instrum. Methods Phys. Res. A 777, 172 (2015)

    Article  ADS  Google Scholar 

  56. W.R. Plass, T. Dickel, et al., Nucl. Instrum. Methods Phys. Res. B 317, 457 (2013)

    Article  ADS  Google Scholar 

  57. M. Wada, Y. Ishida, H. Wollnik, Nucl. Instrum. Methods Phys. Res. B 241, 983 (2005)

    Article  ADS  Google Scholar 

  58. Y. Ito, P. Schury, M. Wada et al., Nucl. Instrum. Methods Phys. Res. B 335, 39 (2014)

    Article  ADS  Google Scholar 

  59. F. Wienholtz et al., Nature 498, 346 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kowalska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalska, M. Global properties of atomic nuclei. Eur. Phys. J. Plus 131, 294 (2016). https://doi.org/10.1140/epjp/i2016-16294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16294-0

Navigation