Skip to main content
Log in

Description for rotating C60 fullerenes via an analogue of Gödel-type metric

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper a geometric approach to describe a rotating fullerene molecule with Ih symmetry is developed. We study the quantum dynamics of quasiparticles in a continuum limit considering a description of fullerene in a spherical solution of the Gödel-type space-time with a topological defect. Therefore, we study the molecule in a rotating frame. Also we combine the well-known non-Abelian monopole approach with this geometric description, including the case of the presence of the external Aharonov-Bohm flux. The energy levels and the persistent current for this study are obtained, and we show that they depend on the geometrical and topological properties of the fullerene. Also, we verify recovering of the well-known results for limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 1 (1992)

    Article  Google Scholar 

  3. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.K. Pachos, Contemp. Phys. 50, 375 (2009)

    Article  ADS  Google Scholar 

  7. M. Kleman, Points, Lignes, Parois: dans les fluides anisotropes et les solides cristallins (Editions de Physique, France, 1977)

  8. B.A. Bilby, E. Smith, Proc. R. Soc. Sect. A 231, 263 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  9. B.A. Bilby, E. Smith, Proc. R. Soc. Sect. A 236, 481 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Kröner, Arch. Ration. Mech. Anal. 4, 18 (1960)

    Google Scholar 

  11. I.E. Dzyaloshinskii, G.E. Volovick, Ann. Phys. 125, 67 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.O. Katanaev, I.V. Volovich, Ann. Phys. (N.Y.) 216, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Furtado, F. Moraes, A.M. de M. Carvalho, Phys. Lett. A 372, 5368 (2008)

    Article  ADS  Google Scholar 

  14. K. Bakke, C. Furtado, S. Sergeenkov, EPL 87, 30002 (2009)

    Article  ADS  Google Scholar 

  15. K. Bakke, A. Yu. Petrov, C. Furtado, Ann. Phys. (N.Y.) 327, 2946 (2012)

    Article  ADS  Google Scholar 

  16. A.M. de M. Carvalho, C.A. de Lima Ribeiro, F. Moraes, C. Furtado, Eur. Phys. J. Plus 128, 6 (2013)

    Article  Google Scholar 

  17. M.J. Bueno, C. Furtado, A.M. de M. Carvalho, Eur. Phys. J. B, Cond. Mat. Phys. 85, 53 (2012)

    Article  ADS  Google Scholar 

  18. K. Bakke, C. Furtado, Phys. Rev. A 87, 012130 (2013)

    Article  ADS  Google Scholar 

  19. K. Bakke, C. Furtado, Phys. Lett. A 376, 1269 (2012)

    Article  ADS  Google Scholar 

  20. G.A. Marques, V.B. Bezerra, C. Furtado, F. Moraes, Int. J. Mod. Phys. A 20, 6051 (2005)

    Article  ADS  Google Scholar 

  21. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000)

    Article  ADS  Google Scholar 

  22. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004)

    Article  ADS  Google Scholar 

  23. N.D. Birrell, P.C.W. Davies, Quantum fields in curved spaces (Cambridge University Press, Cambridge, 1982)

  24. D.V. Kolesnikov, V.A. Osipov, Eur. Phys. J. B 49, 465 (2006)

    Article  ADS  Google Scholar 

  25. M. Pudlak, R. Pincak, V.A. Osipov, Phys. Rev. A 75, 025201 (2007)

    Article  ADS  Google Scholar 

  26. M. Pudlak, R. Pincak, V.A. Osipov, Phys. Rev. A 75, 065201 (2007)

    Article  ADS  Google Scholar 

  27. R. Pincak, Phys. Lett. A 340, 267 (2005)

    Article  ADS  Google Scholar 

  28. E. Cavalcante, C. Furtado, J. Phys. Chem. Solids 75, 1265 (2014)

    Article  ADS  Google Scholar 

  29. J.Q. Shen, S. He, F. Zhuang, Eur. Phys. J. D 33, 35 (2005)

    Article  ADS  Google Scholar 

  30. Y. Aharonov, G. Carmi, Found. Phys. 3, 493 (1973)

    Article  ADS  Google Scholar 

  31. J.R.F. Lima, J. Brandão, M.M. Cunha, F. Moraes, Eur. Phys J. D 68, 94 (2014)

    Article  ADS  Google Scholar 

  32. J.R.F. Lima, F. Moraes, Eur. Phys J. B 88, 263 (2015)

    Article  Google Scholar 

  33. M.M. Cunha, J. Brandão, J.R.F. Lima, F. Moraes, Eur. Phys J. B 88, 288 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Rebouças, J. Tiomno, Phys. Rev. D 28, 1251 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Rebouças, M. Aman, A.F.F. Teixeira, J. Math. Phys. 27, 1370 (1985)

    Article  ADS  Google Scholar 

  36. M.O. Galvão, M. Rebouças, A.F.F. Teixeira, W.M. Silva Jr, Math. Phys. 29, 1127 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. K. Gödel, Rev Mod. Phys. 21, 447 (1949)

    Article  ADS  Google Scholar 

  38. S. Coleman, The Magnetic Monopole Fifty Years Later, in The Unity of Fundamental Interactions (Plenum press, New York, 1983)

  39. C. Furtado, V.B. Bezerra, F. Moraes, Phys. Lett. A 289, 160 (2001)

    Article  ADS  Google Scholar 

  40. J.S. Carvalho, E. Passos, C. Furtado, F. Moraes, Eur. Phys. J. C 57, 817 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. K. Imura, Y. Yoshimura, Y. Takane, T. Fukui, Phys. Rev. B 86, 235119 (2012)

    Article  ADS  Google Scholar 

  42. A.A. Abrikosov, Jr., hep-th/0212134

  43. M. Buttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983)

    Article  ADS  Google Scholar 

  44. N. Byers, C.N. Yang, Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  45. R.D. Johnson, C.S. Yannoni, H.C. Dorn et al., Science 255, 1235 (1992)

    Article  ADS  Google Scholar 

  46. Choongyu Hwang et al., Sci. Rep. 2, 590 (2012)

    Google Scholar 

  47. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  48. A.K. Raychaudhuri, S.N. Thakurta, Phys. Rev. D 22, 802 (1980)

    Article  ADS  Google Scholar 

  49. J.D. Barrow, C. Tsagas, Class. Quantum Grav. 21, 1773 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  50. J.D. Barrow, C. Tsagas, Phys. Rev. D 69, 064007 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  51. T. Clifton, J. Barrow, Phys. Rev. D 72, 123003 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. R.J. Gleiser, M. Gurses, A. Karasu, S. Özgür, Class. Quantum Grav. 23, 2653 (2006)

    Article  ADS  Google Scholar 

  53. J. Carvalho, A.M. de M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Furtado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, E., Carvalho, J. & Furtado, C. Description for rotating C60 fullerenes via an analogue of Gödel-type metric. Eur. Phys. J. Plus 131, 288 (2016). https://doi.org/10.1140/epjp/i2016-16288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16288-x

Navigation