Skip to main content
Log in

Study of various technological parameters on the C-Vg and the G-Vg characteristics of MOS structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2017

Abstract.

This paper was devoted to study the effects of some technological parameters (gate, oxide and doping density N a on the electrical properties of MOS structures. The conductance and capacitance were determined from a proposed admittance model. Results showed a frequency dispersion of C-V g and G-V g curves in inversion regime. This modeling takes into account the influence of series and parallel resistances (R s, R p), thickness of oxide layer, the work function of gate electrode and the doping density (N a). The C-V g and G-V g characteristics have been simulated at high frequency (100 kHz-1 MHz).With increasing frequency, the inversion capacitance is decreased whereas the conductance is strongly increased. A degradation of their shapes is shown in the operating accumulation and depletion modes. The accumulation capacitance seems to be strong for titanium oxide (TiO2) and for the oxide thickness is very small. Interestingly, the change of metal gate causes C-V g shifting and variation of the values of the flat band and threshold voltages. In the inversion mode, the C - V g and G-V g decreases with the increase of the doping density (N a). There is a shift of the flat-band and threshold voltage (V fb,V th) when N a increase. Excellent agreement was observed between the calculated and the measured C-V g curves obtained at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Moore, in Solid-State Circuits Conference, Digest of Technical Papers. ISSCC. 2003 IEEE International, Vol. 1 (IEEE, 2003) pp. 20--23, DOI:10.1109/ISSCC.2003.1234194

  2. G.E. Moore, in Proceedings of the International Electron Devices Meeting (IEDM ’75), Vol. 21 (1975) pp. 11--13

  3. A.I. Kingon, J.-P. Maria, S.K. Streiffer, Nature 406, 1032 (2000)

    Article  Google Scholar 

  4. C. Jianjun, C. Shuming, L. Bin, L. Biwei, L. Zheng, T. Zheqian, J. Semiconduct. 31, 074006 (2010)

    Article  ADS  Google Scholar 

  5. A. Godoy, J.A. López-Villanueva, J.A. Jiménez-Tejada, A. Palma, F. Gámiz, Solid-State Electron. 45, 391 (2001)

    Article  ADS  Google Scholar 

  6. F.M. d’Heurle, M.O. Aboelfotoh, F. Pesavento, C.S. Petersson, Appl. Surf. Sci. 53, 237 (1991)

    Article  ADS  Google Scholar 

  7. J.R. Hauser, K. Ahmed, AIP Conf. Proc. 235, 449 (1998)

    Google Scholar 

  8. A. Tataroğlu, S. Altindal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005)

    Article  Google Scholar 

  9. M.M. Bülbül, S. Zeyrek, Microelectron. Eng. 83, 2522 (2006)

    Article  Google Scholar 

  10. P. Chattopadhyay, B. RayChaudhuri, Solid State Electron. 36, 605 (1993)

    Article  ADS  Google Scholar 

  11. V. Mikhaelashvili, Y. Betzer, I. Prudnikov, M. Orenstein, D. Ritter, G. Eisenstein, J. Appl. Phys. 84, 6747 (1998)

    Article  ADS  Google Scholar 

  12. V. Misra, G.P. Heuss, H. Zhong, Appl. Phys. Lett. 78, 4166 (2001)

    Article  ADS  Google Scholar 

  13. J. Lee, Y.-S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin, V. Misra, in Technical Digest - International Electron Devices Meeting (IEEE International, 2003) pp. 13.5.1--13.5.4

  14. H. Kim, P.C. McIntyre, C.O. Chui, K.C. Saraswat, S. Stemmer, J. Appl. Phys. 96, 3468 (2004)

    ADS  Google Scholar 

  15. S. Abermann, J.K. Efavi, G. Sjoblom, M.C. Lemme, J. Olsson, E. Bertagnolli, Microelectron. Eng. 84, 1635 (2007)

    Article  Google Scholar 

  16. E. Atanassova, A. Paskaleva, N. Novkovski, M. Georgieva, J. Appl. Phys. 97, 094104 (2005)

    Article  ADS  Google Scholar 

  17. E. Atanassova, D. Spassov, A. Paskaleva, Microelectron. Reliab. 47, 2088 (2007)

    Article  Google Scholar 

  18. O. Rejaiba, M. Ben Amar, A. Matoussi, Eur. Phys. J. Plus 130, 80 (2015)

    Article  Google Scholar 

  19. H. Mathieu, Physique de semi-conducteurs et des composantes électroniques (Masson S.A., Paris, 1998)

  20. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Willey Interscience Publication, USA, 1982)

  21. A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, N. Boukos, M. Houssa, M. Caymax, Appl. Phys. Lett. 86, 032908 (2005)

    Article  ADS  Google Scholar 

  22. P. Batude, X. Garros, L. Clavelier, C. Le Royer, J.M. Hartmann, V. Loup, P. Besson, L. Vandroux, Y. Campidelli, S. Deleonibus, F. Boulanger, J. Appl. Phys. 102, 034514 (2007)

    Article  ADS  Google Scholar 

  23. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)

    Article  ADS  Google Scholar 

  24. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  25. M. Maitri Mishra, G. Pradhan, F. Ashraf Ali, G. Bose, in Intelligent Computing, Communication and Devices, Proceedings of ICCD., Vol. 1 (2014) pp. 499--507

  26. H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006)

    Article  Google Scholar 

  27. I.-S. Park, T. Lee, H. Ko, J. Ahn, J. Korean. Phys. Soc. 49, 760 (2006)

    Google Scholar 

  28. S.S. Ullah, M. Robinson, J. Hoey, M.S. Driver, A. Caruso, D.L. Schulz, Semicond. Sci. Technol. 27, 065012 (2012)

    Article  ADS  Google Scholar 

  29. P.V. Gray, D.M. Brown, Appl. Phys. Lett. 13, 247 (1968)

    Article  ADS  Google Scholar 

  30. H. Watanabe, IEEE Trans. Electron Dev. 52, 2265 (2005)

    Article  ADS  Google Scholar 

  31. P. Bouillon, T. Skotnicki, IEEE Electron. Dev. Lett. 19, 19 (1998)

    Article  ADS  Google Scholar 

  32. G. Yaron, D. Frohman-Bentchkowsky, Solid State Electron. 23, 433 (1980)

    Article  ADS  Google Scholar 

  33. P. Bouillon, R. Gwoziecki, Th. Skotnicki, Member, IEEE, J. Alieu, P. Gentil, IEEE Trans. Electron. Dev. 47, 871 (2000)

    Article  ADS  Google Scholar 

  34. S.M. Sze, Physics of Semiconductors (Wiley Interscience, 1969)

  35. B.E. Deal, E.H. Snow, C.A. Mead, J. Phys. Chem. Solids. 27, 1873 (1966)

    Article  ADS  Google Scholar 

  36. A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Solid-State Electron. 8, 145 (1965)

    Article  ADS  Google Scholar 

  37. E.H. Nicollian, J.R. Brews, Small-signal steady-state capacitance methods, in Mos (metal oxide semiconductor) physics and technology, Wiley Classics Library (John Wiley & Sons, Hoboken, N.J., 2003) pp. 334--336

  38. V. Midili, Realization of a capacitance-voltage measurement system for semiconductor characterization, Thesis, Aalto University School of Electrical Engineering Degree Programme of Micro and Nanotechnology (2012)

  39. G. Baccarani, S. Solmi, G. Soncini, Alta Frequenza 16, 113 (1972)

    Google Scholar 

  40. D.C. Wheeler, Dissertation submitted to the Graduate School of the University of Notre Dame, High-k-inas metal-oxide-semiconductor capacitors formed by atomic-layer deposition (India, 2009)

  41. A. Paula, B. Ziliotto, Marcello Bellodi, VII Microelectronics Student Forum, SFORUM (2007) http://www.lbd.dcc.ufmg.br/colecoes/sforum/2008/0054.pdf

  42. M. Shur, Surface charge in metal oxide semiconductor capacitor, in Physics of Semi-conductor devices, edited by Nick Holonyak Jr. (Prentice Hall New Jersey, Upper Saddle River, 1990) pp. 332--343

  43. C. Chakraborty, J. Adv. Dielectr. 4, 1450023 (2014)

    Article  Google Scholar 

  44. H. Chakraborty, D. Misra, Int. J. Sci. Res. Publ. 3, 1 (2013)

    Google Scholar 

  45. J.A. Luna-Lopez, M. Aceves-Mijares, O. Malik, Soc. Mex. Ciencia Superf. Vacío. 17, 1 (2004)

    Google Scholar 

  46. P. Fernández-Martínez, F.R. Palomo, S. Hidalgo, C. Fleta, F. Campabadal, D. Flores, Nucl. Instrum. Methods Phys. Res. A 5, 108 (2013)

    Google Scholar 

  47. E. Atanassova, D. Spassov, A. Paskaleva, Microelectron. Eng. 83, 1918 (2006)

    Article  Google Scholar 

  48. D. Spassov, E. Atanassova, D. Virovska, Appl. Phys. A 82, 55 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Rejaiba.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjp/i2017-11433-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejaiba, O., Braña, A. & Matoussi, A. Study of various technological parameters on the C-Vg and the G-Vg characteristics of MOS structures. Eur. Phys. J. Plus 131, 281 (2016). https://doi.org/10.1140/epjp/i2016-16281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16281-5

Navigation