Trigonometric potentials arising from the spheroidal equation: Supersymmetric partners and integral formulas

Abstract.

We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.

This is a preview of subscription content, log in to check access.

References

  1. 1

    A. Ronveaux, Heun’s Differential Equations (Oxford University Press, New York, 1995)

  2. 2

    http://dlmf.nist.gov/30.14

  3. 3

    http://dlmf.nist.gov/30.13

  4. 4

    A.A. Raduta, P. Buganu, J. Phys. G 40, 025108 (2013)

    ADS  Article  Google Scholar 

  5. 5

    B.D.B. Figueiredo, J. Phys. A 35, 2877 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    H.T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Progr. Theor. Phys. 128, 227 (2012)

    ADS  Article  Google Scholar 

  7. 7

    S. Hod, Phys. Rev. D 87, 064017 (2013)

    ADS  Article  Google Scholar 

  8. 8

    S. Hod, Phys. Lett. B 749, 167 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    W.P. O’Connor, Proc. R. Soc. London A 439, 189 (1992)

    ADS  Article  Google Scholar 

  10. 10

    http://dlmf.nist.gov/30.4

  11. 11

    http://dlmf.nist.gov/30.5

  12. 12

    Y. Grandati, C. Quesne, SIGMA 11, 061 (2015)

    MathSciNet  Google Scholar 

  13. 13

    C. Quesne, J. Phys. Conf. Ser. 597, 012064 (2015)

    ADS  Article  Google Scholar 

  14. 14

    D.J. Fernandez, V.S. Morales-Salgado, J. Phys. A 49, 195202 (2016)

    ADS  Article  Google Scholar 

  15. 15

    D. Bermudez, D.J. Fernandez, J. Phys. Conf. Ser. 624, 012012 (2015)

    ADS  Article  Google Scholar 

  16. 16

    A. Contreras-Astorga, A. Schulze-Halberg, Closed form of the Wronskian and regularity conditions in confluent supersymmetric quantum mechanics, in preparation (2016)

  17. 17

    A. Contreras-Astorga, A. Schulze-Halberg, J. Phys. A 48, 315202 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    A. Schulze-Halberg, J. Math. Phys. 57, 023521 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    F. Cooper, A Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    D.J. Fernandez, AIP Conf. Proc. 1287, 3 (2010)

    ADS  Google Scholar 

  21. 21

    A. Schulze-Halberg, J. Wang, Symmetry 7, 412 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22

    A. Schulze-Halberg, J. Wang, J. Math. Phys. 56, 072106 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    A. Schulze-Halberg, Eur. Phys. J. Plus 128, 68 (2013)

    Article  Google Scholar 

  24. 24

    D. Bermudez, Ann. Phys. 364, 35 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1964)

  26. 26

    http://dlmf.nist.gov/30.2 and http://dlmf.nist.gov/30.3

  27. 27

    http://functions.wolfram.com/MathieuandSpheroidalFunctions/SpheroidalPS/21/01/01/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Axel Schulze-Halberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulze-Halberg, A. Trigonometric potentials arising from the spheroidal equation: Supersymmetric partners and integral formulas. Eur. Phys. J. Plus 131, 202 (2016). https://doi.org/10.1140/epjp/i2016-16202-8

Download citation