Advertisement

Trigonometric potentials arising from the spheroidal equation: Supersymmetric partners and integral formulas

  • Axel Schulze-Halberg
Regular Article
  • 42 Downloads

Abstract.

We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.

References

  1. 1.
    A. Ronveaux, Heun’s Differential Equations (Oxford University Press, New York, 1995)Google Scholar
  2. 2.
  3. 3.
  4. 4.
    A.A. Raduta, P. Buganu, J. Phys. G 40, 025108 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    B.D.B. Figueiredo, J. Phys. A 35, 2877 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H.T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Progr. Theor. Phys. 128, 227 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Hod, Phys. Rev. D 87, 064017 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hod, Phys. Lett. B 749, 167 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    W.P. O’Connor, Proc. R. Soc. London A 439, 189 (1992)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Y. Grandati, C. Quesne, SIGMA 11, 061 (2015)MathSciNetGoogle Scholar
  13. 13.
    C. Quesne, J. Phys. Conf. Ser. 597, 012064 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Fernandez, V.S. Morales-Salgado, J. Phys. A 49, 195202 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    D. Bermudez, D.J. Fernandez, J. Phys. Conf. Ser. 624, 012012 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Contreras-Astorga, A. Schulze-Halberg, Closed form of the Wronskian and regularity conditions in confluent supersymmetric quantum mechanics, in preparation (2016)Google Scholar
  17. 17.
    A. Contreras-Astorga, A. Schulze-Halberg, J. Phys. A 48, 315202 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Schulze-Halberg, J. Math. Phys. 57, 023521 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Cooper, A Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D.J. Fernandez, AIP Conf. Proc. 1287, 3 (2010)ADSGoogle Scholar
  21. 21.
    A. Schulze-Halberg, J. Wang, Symmetry 7, 412 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Schulze-Halberg, J. Wang, J. Math. Phys. 56, 072106 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Schulze-Halberg, Eur. Phys. J. Plus 128, 68 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Bermudez, Ann. Phys. 364, 35 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1964)Google Scholar
  26. 26.
  27. 27.

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Actuarial Science and Department of PhysicsIndiana University NorthwestGaryUSA

Personalised recommendations