Skip to main content

Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells

An Erratum to this article was published on 31 March 2017

Abstract.

The present article describes the blood flow in a catheterized artery with radially symmetric and axially asymmetric stenosis. To understand the effects of red cell concentration, plasma layer thickness and catheter size simultaneously, blood is considered by a two-layered model comprising a core region of suspension of all the erythrocytes (particles) supposed to be a particle-fluid mixture and a peripheral zone of cell-free plasma. The analytical expressions for flow features, such as fluid phase and particle phase velocities, flow rate, wall shear stress and resistive force are obtained. It is witnessed that the presence of the catheter causes a substantial increase in the frictional forces on the walls of arterial stenosis and catheter, shear stress and flow resistance, in addition to that, have occurred due to the presence of red cells concentration (volume fraction density of the particles) and the absence of peripheral plasma layer near the wall of the stenosed artery. The introduction of an axially asymmetric nature of stenosis and plasma layer thickness causes significant reduction in flow resistance. One can notice that the two-phase fluid (suspension model) is more profound to the thickness of peripheral plasma layer and catheter than the single-phase fluid.

This is a preview of subscription content, access via your institution.

References

  1. D.F. Young, J. Eng. Ind. Trans. AMSE 90, 248 (1968)

    Article  Google Scholar 

  2. R. Ponalagusamy, Blood Flow Through Stenosed Tube, PhD Thesis, IIT, Bombay, India (1986)

  3. P. Chaturani, R. Ponnalagarsamy, Biorheology 23, 499 (1986)

    Google Scholar 

  4. D.F. Young, J. Biomech. Eng. Trans. ASME 101, 157 (1979)

    Article  Google Scholar 

  5. C.G. Caro, Recent Adv. Cardiovasc. Dis. 2, 6 (1981)

    Google Scholar 

  6. L. Distenfass, Cardiovasc. Med. 2, 337 (1971)

    Google Scholar 

  7. D.L. Fry, Circ. Res. 22, 165 (1968)

    Article  Google Scholar 

  8. R. Ponalagusamy, J. Franklin Inst. 349, 2861 (2012)

    Article  MathSciNet  Google Scholar 

  9. M.D. Deshpamde, D.P. Giddens, R.F. Mabon, J. Biomech. 9, 65 (1979)

    Google Scholar 

  10. J.H. Forrester, D.F. Young, J. Biomech. 3, 297 (1970)

    Article  Google Scholar 

  11. D.A. Macdonald, J. Biomech. 12, 13 (1979)

    Article  Google Scholar 

  12. P. Chaturani, R. Ponnalagarsamy, Blood flow through stenosed arteries, in Proceedings of The First International Conference on Physiological Fluid Dynamics (1983) pp. 63--67

  13. J.B. Shukla, R.S. Parihar, S.P. Gupta, Bull. Math. Biol. 42, 797 (1980)

    Article  Google Scholar 

  14. G.R. Cokelet, The Rheology of Human Blood, in Biomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1972)

  15. R.H. Haynes, Am. J. Physiol. 198, 1193 (1960)

    Google Scholar 

  16. R. Skalak, Mechanics of Microcirculation, in Biomechanics, Its Foundation and Objectives, edited by Y.C. Furg (Prentice Hall Publ. Co., Englewood Cliffs, 1972)

  17. L.M. Srivastava, V.P. Srivastava, Biorheology 20, 761 (1983)

    Google Scholar 

  18. L.M. Srivastava, Int. J. Bio-Med. Comput. 38, 141 (1995)

    Article  Google Scholar 

  19. Kh.S. Mekheimer, M.A. Kot, El, Chem. Eng. Comm. 197, 1195 (2010)

    Article  Google Scholar 

  20. G. Bugliarello, J. Sevilla, Biorheology l7, 85 (1970)

    Google Scholar 

  21. G. Bugliarello, J.W. Hayden, Trans. Soc. Rheol. 7, 209 (1963)

    Article  Google Scholar 

  22. J.B. Shukla, R.S. Parihar, S.P. Gupta, Biorheology 17, 403 (1980)

    Google Scholar 

  23. P. Chaturani, P.N. Kaloni, Biorheology 13, 243 (1976)

    Google Scholar 

  24. P. Chaturani, R. Ponalagusamy, A two-layered model for blood flow through stenosed arteries, in Proceedings of the 11th National Conference on Fluid Mechanics and Fluid Power, B.H.E.L (R & D) (Hydrabad, India, 1982) pp. 16--22

  25. R. Ponalagusamy, J. Appl. Sci. 7, 1071 (2007)

    Article  ADS  Google Scholar 

  26. V.P. Srivastava, R. Rastogi, R. Vishnoi, Comp. Math. Appl. 60, 432 (2010)

    Article  Google Scholar 

  27. R. Ponalagusamy, R. Tamil Selvi, J. Franklin Ins. 348, 2308 (2011)

    Article  Google Scholar 

  28. R. Ponalagusamy, R. Tamil Selvi, Meccanica 48, 2427 (2013)

    Article  MathSciNet  Google Scholar 

  29. R. Ponalagusamy, R. Tamil Selvi, Meccanica 50, 927 (2015)

    Article  MathSciNet  Google Scholar 

  30. H. Kanai, M. Lizuka, K. Sakamotos, Med. Biol. Eng. 28, 483 (1970)

    Article  Google Scholar 

  31. P. Gunj, R. Abben, P.L. Friedman, J.D. Granic, W.H. Barry, D.C. Levin, Am. J. Cardiol. 55, 910 (1985)

    Article  Google Scholar 

  32. H.V. Anderson, G.S. Roubin, P.P. Leimgruber, W.R. Cox, J.S. Douglas Jr., S.B. King III, A.R. Gruentzig, Circulation 73, 1223 (1986)

    Article  Google Scholar 

  33. L.H. Back, E.Y. Kwack, M.R. Back, J. Biomed. Eng. 118, 83 (1996)

    Google Scholar 

  34. A. Sarkar, G. Jayaraman, J. Biomech. 31, 781 (1998)

    Article  Google Scholar 

  35. D.A. Drew, Arch. Ration. Mech. Anal. 62, 149 (1976)

    Article  Google Scholar 

  36. S.E. Charm, G.S. Kurland, Blood Flow and Microcirculation (John Wiley, New York, 1974)

  37. C.K.W. Tam, J. Fluid Mech. 38, 537 (1969)

    Article  ADS  Google Scholar 

  38. D.A. Drew, Phys. Fluids 19, 2081 (1979)

    Article  ADS  Google Scholar 

  39. V.P. Srivastava, M. Sexena, Math. Biosci. 139, 79 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ponalagusamy.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjp/i2017-11418-8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponalagusamy, R. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells. Eur. Phys. J. Plus 131, 185 (2016). https://doi.org/10.1140/epjp/i2016-16185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16185-4