Abstract.
The present article describes the blood flow in a catheterized artery with radially symmetric and axially asymmetric stenosis. To understand the effects of red cell concentration, plasma layer thickness and catheter size simultaneously, blood is considered by a two-layered model comprising a core region of suspension of all the erythrocytes (particles) supposed to be a particle-fluid mixture and a peripheral zone of cell-free plasma. The analytical expressions for flow features, such as fluid phase and particle phase velocities, flow rate, wall shear stress and resistive force are obtained. It is witnessed that the presence of the catheter causes a substantial increase in the frictional forces on the walls of arterial stenosis and catheter, shear stress and flow resistance, in addition to that, have occurred due to the presence of red cells concentration (volume fraction density of the particles) and the absence of peripheral plasma layer near the wall of the stenosed artery. The introduction of an axially asymmetric nature of stenosis and plasma layer thickness causes significant reduction in flow resistance. One can notice that the two-phase fluid (suspension model) is more profound to the thickness of peripheral plasma layer and catheter than the single-phase fluid.
This is a preview of subscription content, access via your institution.
References
D.F. Young, J. Eng. Ind. Trans. AMSE 90, 248 (1968)
R. Ponalagusamy, Blood Flow Through Stenosed Tube, PhD Thesis, IIT, Bombay, India (1986)
P. Chaturani, R. Ponnalagarsamy, Biorheology 23, 499 (1986)
D.F. Young, J. Biomech. Eng. Trans. ASME 101, 157 (1979)
C.G. Caro, Recent Adv. Cardiovasc. Dis. 2, 6 (1981)
L. Distenfass, Cardiovasc. Med. 2, 337 (1971)
D.L. Fry, Circ. Res. 22, 165 (1968)
R. Ponalagusamy, J. Franklin Inst. 349, 2861 (2012)
M.D. Deshpamde, D.P. Giddens, R.F. Mabon, J. Biomech. 9, 65 (1979)
J.H. Forrester, D.F. Young, J. Biomech. 3, 297 (1970)
D.A. Macdonald, J. Biomech. 12, 13 (1979)
P. Chaturani, R. Ponnalagarsamy, Blood flow through stenosed arteries, in Proceedings of The First International Conference on Physiological Fluid Dynamics (1983) pp. 63--67
J.B. Shukla, R.S. Parihar, S.P. Gupta, Bull. Math. Biol. 42, 797 (1980)
G.R. Cokelet, The Rheology of Human Blood, in Biomechanics (Prentice-Hall, Englewood Cliffs, N.J., 1972)
R.H. Haynes, Am. J. Physiol. 198, 1193 (1960)
R. Skalak, Mechanics of Microcirculation, in Biomechanics, Its Foundation and Objectives, edited by Y.C. Furg (Prentice Hall Publ. Co., Englewood Cliffs, 1972)
L.M. Srivastava, V.P. Srivastava, Biorheology 20, 761 (1983)
L.M. Srivastava, Int. J. Bio-Med. Comput. 38, 141 (1995)
Kh.S. Mekheimer, M.A. Kot, El, Chem. Eng. Comm. 197, 1195 (2010)
G. Bugliarello, J. Sevilla, Biorheology l7, 85 (1970)
G. Bugliarello, J.W. Hayden, Trans. Soc. Rheol. 7, 209 (1963)
J.B. Shukla, R.S. Parihar, S.P. Gupta, Biorheology 17, 403 (1980)
P. Chaturani, P.N. Kaloni, Biorheology 13, 243 (1976)
P. Chaturani, R. Ponalagusamy, A two-layered model for blood flow through stenosed arteries, in Proceedings of the 11th National Conference on Fluid Mechanics and Fluid Power, B.H.E.L (R & D) (Hydrabad, India, 1982) pp. 16--22
R. Ponalagusamy, J. Appl. Sci. 7, 1071 (2007)
V.P. Srivastava, R. Rastogi, R. Vishnoi, Comp. Math. Appl. 60, 432 (2010)
R. Ponalagusamy, R. Tamil Selvi, J. Franklin Ins. 348, 2308 (2011)
R. Ponalagusamy, R. Tamil Selvi, Meccanica 48, 2427 (2013)
R. Ponalagusamy, R. Tamil Selvi, Meccanica 50, 927 (2015)
H. Kanai, M. Lizuka, K. Sakamotos, Med. Biol. Eng. 28, 483 (1970)
P. Gunj, R. Abben, P.L. Friedman, J.D. Granic, W.H. Barry, D.C. Levin, Am. J. Cardiol. 55, 910 (1985)
H.V. Anderson, G.S. Roubin, P.P. Leimgruber, W.R. Cox, J.S. Douglas Jr., S.B. King III, A.R. Gruentzig, Circulation 73, 1223 (1986)
L.H. Back, E.Y. Kwack, M.R. Back, J. Biomed. Eng. 118, 83 (1996)
A. Sarkar, G. Jayaraman, J. Biomech. 31, 781 (1998)
D.A. Drew, Arch. Ration. Mech. Anal. 62, 149 (1976)
S.E. Charm, G.S. Kurland, Blood Flow and Microcirculation (John Wiley, New York, 1974)
C.K.W. Tam, J. Fluid Mech. 38, 537 (1969)
D.A. Drew, Phys. Fluids 19, 2081 (1979)
V.P. Srivastava, M. Sexena, Math. Biosci. 139, 79 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1140/epjp/i2017-11418-8.
Rights and permissions
About this article
Cite this article
Ponalagusamy, R. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells. Eur. Phys. J. Plus 131, 185 (2016). https://doi.org/10.1140/epjp/i2016-16185-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2016-16185-4