Advertisement

Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh(ax)

  • Shishan Dong
  • Guo-Hua Sun
  • B. J. Falaye
  • Shi-Hai Dong
Regular Article

Abstract.

In this work we report the semi-exact solutions of the position-dependent mass Schrödinger equation (PDMSE) with a class of hyperbolic potential \( V_{0}\tanh(a x)\). The terminology of semi-exact solutions arises from the fact that the wave functions of this quantum system can be expressed by confluent Heun functions, but the energy levels cannot be obtained analytically. The potential \( V(z)\) obtained by some canonical transformations essentially keeps invariant when the potential parameter v is replaced by - v . The properties of the wave functions depending on v are also illustrated graphically. We find that the quasi-symmetric and quasi-antisymmetric wave functions that appear only for very small v are violated completely when v becomes large. This arises from the fact that the parity, which is almost a defined symmetry for very small v, is completely violated for large v. We also notice that the energy level \( \varepsilon_{1}\) decreases and the \( \varepsilon_{6-8}\) ones increase with the increasing potential parameter v, respectively, while the \( \varepsilon_{2-5}\) ones first increase and then decrease with increasing v.

References

  1. 1.
    L.I. Schiff, Quantum Mechanics, 3rd edition (New York, McGraw-Hill Book Co., 1955)Google Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory), 3rd edition (Pergamon, New York, 1977)Google Scholar
  3. 3.
    D. ter Haar, Problems in Quantum Mechanics, 3rd edition (Pion Ltd., London, 1975)Google Scholar
  4. 4.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Kluwer Academic Publisher, 2007)Google Scholar
  6. 6.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Bassel, 1988)Google Scholar
  7. 7.
    B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Few-Body Syst. 56, 63 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Z.Q. Ma, B.W. Xu, Europhys. Lett. 69, 685 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    W.C. Qiang, S.H. Dong, EPL 89, 10003 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    L. Dekar, L. Chetouani, T.F. Hammann, J. Math. Phys. 39, 2551 (1998)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Dekar, L. Chetouani, T.F. Hammann, Phys. Rev. A 59, 107 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Barker, J.R. Watling, Microelectron. Eng. 63, 97 (2002)CrossRefGoogle Scholar
  13. 13.
    A.R. Plastino, A. Rigo, M. Casas, A. Plastino, Phys. Rev. A 60, 4318 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Editions de Physique (Les Ulis, 1988)Google Scholar
  17. 17.
    M. Barranco, M. Pi, S.M. Gatica, E.S. Hernandez, J. Navarro, Phys. Rev. B 56, 8997 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    L. Serra, E. Lipparini, Europhys. Lett. 40, 667 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    O. Von Roos, Phys. Rev. B 27, 7547 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    O. Von Roos, H. Mavromatis, Phys. Rev. B 31, 2294 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    J. Yu, S.H. Dong, Phys. Lett. A 325, 194 (2004)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Yu, S.H. Dong, G.H. Sun, Phys. Lett. A 322, 290 (2004)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M.S. Cunha, H.R. Christiansen, Commun. Theor. Phys. 60, 642 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Ronveaux (Editor), Heun's Differential Equations (Oxford University Press, Oxford, 1995)Google Scholar
  25. 25.
    C.A. Downing, J. Math. Phys. 54, 072101 (2013)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    P.P. Fiziev, J. Phys. A: Math. Theor. 43, 035203 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Hartmann, M.E. Portnoi, Phys. Rev. A 89, 012101 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    G. Yanez-Navarro, G.H. Sun, T. Dytrich, K.D. Launey, S.H. Dong, J.P. Draayer, Ann. Phys. 348, 153 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    G.H. Sun, S.H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Int. J. Quantum. Chem. 115, 891 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Panahiy, Z. Bakhshi, Acta Phys. Pol. B 41, 11 (2010)Google Scholar
  31. 31.
    B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, Mod. Phys. Lett. A 19, 2765 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Cunha, private communicationGoogle Scholar
  33. 33.
    S.H. Dong, Wave Equations in Higher Dimensiones (Springer, Netherlands, 2011)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shishan Dong
    • 1
  • Guo-Hua Sun
    • 2
  • B. J. Falaye
    • 3
  • Shi-Hai Dong
    • 4
  1. 1.Information and Engineering CollegeDalian UniversityDalianP. R. China
  2. 2.Catedrática CONACyT, Centro de Investigación en Computación, Instituto Politécnico NacionalUPALMMexico D. F.Mexico
  3. 3.ESFM, Instituto Politécnico NacionalMexico D. F.Mexico
  4. 4.CIDETECInstituto Politécnico NacionalMexico D. F.Mexico

Personalised recommendations