Processes involving few degrees of freedom in the frame of Intranuclear Cascade approaches

  • J. Cugnon
  • A. Boudard
  • J. -C. David
  • S. Leray
  • D. Mancusi
Review
Part of the following topical collections:
  1. Focus Point on Nuclear data for energy

Abstract.

This article focuses on spallation reactions, i.e. interactions of energetic nucleons, basically with a kinetic energy in the 100MeV to a few GeV range, with a target nucleus. These processes are described rather successfully by the so-called Intranuclear Cascade (INC) plus evaporation models. They can be viewed as a first stage of nucleon-nucleon collisions, ejecting fast particles, followed by evaporation of slow particles from the target remnant. These cascade + evaporation models have, now, globally reached a high level of predictive power, owing in particular to successive research programs. The present work, which is an outcome of one of these programs, the recent European Union ANDES research program, deals with a set of reactions (or observable quantities), which can be due to a single collision, such as the one-nucleon removal reactions or the quasi-elastic elastic process. A survey of the experimental data is presented, which allows to clearly point out that, often, the INC models are unsatisfactory for the description of these peculiar events, whereas they are rather successful for the rest of the experimental data. This paradoxical situation is tentatively related to quasi-particle effects which are neglected in INC models.

References

  1. 1.
    W. Gudowski, Nucl. Phys. A 654, 436c (1999)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ait Abderrahim, P. Baeten, D. De Bruyn, J. Heyse, P. Schuurmans, J. Wagemans, Nucl. Phys. News 20, 24 (2010)CrossRefGoogle Scholar
  3. 3.
    D. Filges, F. Goldenbaum, Handbook of Spallation Research Theory, Experiments and Applications (Wiley VCH, Berlin, 2010)Google Scholar
  4. 4.
    Geant4 Collaboration, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    I. Tanihata, On the possible use of secondary radioactive beams, in Treatise on Heavy-Ion Science, edited by D.A. Bromley, Vol. 8 (Plenum Press, New York, 1989) p. 443Google Scholar
  6. 6.
    M. Durante, Riv. Nuovo Cimento 25, 1 (2002)Google Scholar
  7. 7.
    M. Longair, High Energy Astrophysics, Vol. 1 and 2 (Cambridge University Press, Cambridge 1997)Google Scholar
  8. 8.
    G. Kraft, Strahlenther. Onkol. 166, 10 (1990)Google Scholar
  9. 9.
    Benchmark of Spallation Models, organized by the IAEA, http://www-nds.iaea.org/spallations/
  10. 10.
    J. Cugnon, Few-Body Syst. 53, 181 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank, Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, International Centre for Theoretical Physics, Trieste, Italy 4 - 8 February 2008 (IAEA, Vienna, Austria, 2008) (NDS)-0530Google Scholar
  12. 12.
    J.-C. David, D. Filges, F. Gallmeier, M. Khankader, A. Konobeyev, S. Leray, G. Mank, A. Mengoni, R. Michel, N. Otuka, Y. Yariv, Prog. Nucl. Sci. Technol., Conf. Ser. 2, 942 (2011)CrossRefGoogle Scholar
  13. 13.
    J.-P. Meulders, A. Koning, S. Leray, HINDAS Detailed Fianal Report, available on-line at the following address: http://www.theo.phys.ulg.ac.be/~cugnon/Final_Scientific_Report_HINDAS.pdf
  14. 14.
    E. M. Gonzalez, A. Koning, S. Leray, A. Plompen, J. Sanz, NUDATRA, Nuclear Data for Transmutation in IP-Eurotrans, available on-line at the following address: ftp://ftp.nrg.eu/pub/www/talys/bib_Koning/2006_Gonzalez_NUDATRA_Nimes.pdfGoogle Scholar
  15. 15.
    European Union research contract ANDES-N$^{\circ}$ 249671 (RTD-J5/AC/MC:ap/Ares) (2010) 662150Google Scholar
  16. 16.
    J. Cugnon, C. Volant, S. Vuillier, Nucl. Phys. A 620, 475 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    R. Serber, Phys. Rev. 72, 1114 (1947)ADSCrossRefGoogle Scholar
  18. 18.
    S. Vuillier, PhD thesis, Paris-Sud University, France, 1998Google Scholar
  19. 19.
    A. Boudard, J. Cugnon, S. Leray, C. Volant, Phys. Rev. C 66, 044615 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    A. Boudard, J. Cugnon, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP, Trieste, 4-8 February 2008, edited by D. Filges, IAEA INDC (NDS)-0530 (IAEA Publications, Vienna, Autriche 2008) pp. 29-50Google Scholar
  21. 21.
    S.G. Mashnik, K.K. Gudima, R.E. Prael, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP, Trieste, 4-8 February 2008, edited by D. Filges, IAEA INDC (NDS)-0530 (IAEA Publications, Vienna, Autriche 2008) pp. 51-52Google Scholar
  22. 22.
    Y. Yariv, Th. Aoust, A. Boudard, J. Cugnon, J.-C. David, S. Lemaire, S. Leray, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited O. Bersillon (EDP Sciences, Paris, 2008) pp. 1125-1128Google Scholar
  23. 23.
    J. Cugnon, A. Boudard, S. Leray, D. Mancusi, in Proceedings of Int. Topical Meeting on Nuclear Research Applications and Utilization of Accelerators (AccApp09), IAEA, Vienna, 2009 (IAEA Publications, Vienna, 2010) ISBN 978-92-0-150410-4, SM/SR-02Google Scholar
  24. 24.
    A. Boudard, J. Cugnon, J.-C. David, S. Leray, D. Mancusi, Phys. Rev. C 87, 014606 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L. Audirac et al., Phys. Rev. C 88, 041602 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    D. Mancusi, A. Boudard, J. Carbonell, J. Cugnon, J.-C. David, S. Leray, Phys. Rev. C 91, 034602 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kelić, M.V. Ricciardi, K.-H. Schmidt, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, in IAEA INDC (NDS)-0530, edited by D. Filges (IAEA Publications, Vienna, 2008) pp. 181-222Google Scholar
  28. 28.
    D. Mancusi, A. Boudard, J. Cugnon, J.-C. David, P. Kaitaniemi, S. Leray, Phys. Rev. C 91, 054602 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, New York, 1962)Google Scholar
  30. 30.
    W. Botermans, R. Malfliet, Phys. Lett. B 171, 22 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    W. Botermans, R. Malfliet, Phys. Rep. 198, 115 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    V.E. Bunakov, G.V. Matvejev, Z. Phys. A 322, 511 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    A.S. Iljinov, M.V. Kazarnovsky, E.Ya. Paryev, Intermediate-Energy Nuclear Physics (CRC Press Inc, London, 1994)Google Scholar
  34. 34.
    R.E. Chrien et al., Phys. Rev. C 21, 1014 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    J.A. McGill, G.W. Hoffmann, M.L. Barlett, R.W. Fergerson, E.C. Milner, R.E. Chrien, R.J. Sutter, T. Kozlowski, R.L. Stearns, Phys. Rev. C 29, 204 (1984)ADSCrossRefGoogle Scholar
  36. 36.
    X. Ledoux et al., Phys. Rev. Lett. 82, 4412 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    J. Cugnon, S. Leray, E. Martinez, Y. Patin, S. Vuillier, Phys. Rev. C 56, 2431 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    A.K. Weaver, J.D. Anderson, H.H. Barschall, J.C. Davis, Phys. Med. Biol. 18, 64 (1973)CrossRefGoogle Scholar
  39. 39.
    S. Hashimoto, Y. Iwamoto, T. Sato, K. Niita, A. Boudard, J. Cugnon, J.-C. David, S. Leray, D. Mancusi, Nucl. Instrum. Methods Phys. Res. B 333, 27 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    E.L. Hjort et al., Phys. Rev. C 53, 237 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    M. Hagiwara, T. Itoga, N. Kawata, N. Hirabayashi, T. Oishi, T. Yamauchi, M. Baba, M. Sugimoto, T. Muroga, Fusion Sci. Technol. 48, 1320 (2005)Google Scholar
  42. 42.
    S. Chiba et al., Phys. Rev. C 54, 285 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    T. Enqvist et al., Nucl. Phys. A 686, 481 (2001)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Kelić et al., Phys. Rev. C 70, 064608 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    N.P. Jacob, S.S. Markowitz, Phys. Rev. C 11, 541 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    C.-X. Chen et al., Phys. Rev. C 56, 1536 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    C. Villagrasa-Canton et al., Phys. Rev. C 75, 044603 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    F. Rejmund et al., Nucl. Phys. A 683, 540 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    L. Giot et al., Nucl. Phys. A 899, 116 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    P. Napolitani et al., Phys. Rev. C 76, 064609 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    L. Audouin et al., Nucl. Phys. A 768, 1 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    J. Taieb et al., Nucl. Phys. A 724, 413 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Y.E. Titarenko, Experimental and Theoretical Study of the Yields of Residual Product Nuclei Produced in Thin Targets Irradiated by 100-2600 MeV Protons, INDC report INDC(CCP)-434 (IAEA, Nuclear Data Section, International Nuclear Data Committee, Vienna, Austria, 2002)Google Scholar
  54. 54.
    R. Michel et al., Nucl. Instrum. Methods B 103, 183 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    P.L. Reeder, Phys. Rev. 178, 1795 (1969)ADSCrossRefGoogle Scholar
  56. 56.
    Th. Aoust, J. Cugnon, Nucl. Phys. A 828, 52 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    T.E. Ward, P.P. Singh, D.L. Friesel, A. Yavin, A. Doron, J.M. D’Auria, G. Sheffer, M. Dillig, Phys. Rev. C 24, 588 (1981)ADSCrossRefGoogle Scholar
  58. 58.
    Th. Aoust, J. Cugnon, Phys. Rev. C 74, 064607 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    M. Dombsky et al., Phys. Rev. C 32, 253 (1985)ADSCrossRefGoogle Scholar
  60. 60.
    J.-C. David, A. Boudard, J. Cugnon, S. Ghali, S. Leray, D. Mancusi, L. Zanini, Eur. Phys. J. A 49, 29 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    J. Cugnon, P. Henrotte, Nuclear Reactions Mechanisms: from Compound Nucleus to Multiple Scattering, in Lecture Notes (Université de Louvain-la-Neuve, Belgium, July, 2002)Google Scholar
  62. 62.
    R.J. Glauber, in Lectures in Theoretical Physics, Vol. I, edited by W. Brittin (Interscience, New York, 1959)Google Scholar
  63. 63.
    K.M. Watson, Phys. Rev. 89, 575 (1953)ADSCrossRefGoogle Scholar
  64. 64.
    M. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)Google Scholar
  65. 65.
    A.K. Kerman, H. McManus, R.M. Thaler, Ann. Phys. (N.Y.) 8, 551 (1959)ADSCrossRefGoogle Scholar
  66. 66.
    H. Feshbach, J. Hüfner, Ann. Phys. (N.Y.) 56, 268 (1970)ADSCrossRefGoogle Scholar
  67. 67.
    J. Cugnon, B. Vandenbossche, Internal report, University of Liège, 2015, available on-line at the following address: http://www.theo.phys.ulg.ac.be/wiki/uploads/d/d9/SSA.pdf
  68. 68.
    E.F. Redish, K. Stricker-Bauer, Phys. Rev. C 36, 513 (1987)ADSCrossRefGoogle Scholar
  69. 69.
    S. Leray, private communicationGoogle Scholar
  70. 70.
    J. Cugnon, B. Vandenbossche, Internal report, University of Liège, 2015, available on-line at the following address: http://www.theo.phys.ulg.ac.be/wiki/uploads/6/66/SpallQE.pdf
  71. 71.
    S.J. Wallace, Phys. Rev. C 12, 179 (1975)ADSCrossRefGoogle Scholar
  72. 72.
    M.A. Nagarajan, W.L. Wang, D.J. Ernst, R.M. Thaler, Phys. Rev. C 11, 1167 (1975)ADSCrossRefGoogle Scholar
  73. 73.
    J. Cugnon, A. Lejeune, P Grangé, Phys. Rev. C 35, 861 (1987)ADSCrossRefGoogle Scholar
  74. 74.
    C.Q. Li, R. Machleidt, Phys. Rev. C 48, 1702 (1993)ADSCrossRefGoogle Scholar
  75. 75.
    C.Q. Li, R. Machleidt, Phys. Rev. C 49, 566 (1994)ADSCrossRefGoogle Scholar
  76. 76.
    J. Cugnon, R. Sartor, unpublishedGoogle Scholar
  77. 77.
    B. ter Haar, R. Malfliet, Phys. Rev. C 36, 1611 (1987)ADSCrossRefGoogle Scholar
  78. 78.
    H. Takada, J. Nucl. Sci. Tech. 33, 275 (1996)CrossRefGoogle Scholar
  79. 79.
    W.M. Alberico, M. Ericson, A. Molinari, Nucl. Phys. A 379, 429 (1982)ADSCrossRefGoogle Scholar
  80. 80.
    M. Ichimura, K. Kawahigashi, T.S. Jørgensen, C. Gaarde, Phys. Rev. C 39, 1446 (1989)ADSCrossRefGoogle Scholar
  81. 81.
    H. Esbensen, G.F. Bertsch, Ann. Phys. (N.Y.) 157, 255 (1984)ADSCrossRefGoogle Scholar
  82. 82.
    H. Esbensen, G.F. Bertsch, Phys. Rev. Lett. 52, 2257 (1984)ADSCrossRefGoogle Scholar
  83. 83.
    D.L. Prout et al., Phys. Rev. C 52, 228 (1995)ADSCrossRefGoogle Scholar
  84. 84.
    P.K.A. de Witt Huberts, J. Phys. G: Nucl. Part. Phys. 16, 507 (1990)ADSCrossRefGoogle Scholar
  85. 85.
    P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984)ADSCrossRefGoogle Scholar
  86. 86.
    P. Danielewicz, Ann. Phys. (N.Y.) 152, 305 (1984)ADSCrossRefGoogle Scholar
  87. 87.
    R. Malfliet, Nucl. Phys. A 545, 3c (1992)ADSCrossRefGoogle Scholar
  88. 88.
  89. 89.
    L. Zanini, in International Conference on Nuclear Data for Science and Technology, edited by R.C. Haight (Melville, New York, 2005) p. 1525Google Scholar
  90. 90.
    Y. Tall, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, Paris, 2008) p. 1069Google Scholar
  91. 91.
    Y. Tall, PhD Thesis, Université de Nantes, France (2008)Google Scholar
  92. 92.
    L. Zanini, in preparationGoogle Scholar
  93. 93.
    Th. Aoust, PhD thesis, University of Liège (2007)Google Scholar
  94. 94.
    Th. Aoust, J. Cugnon, J. Wagemans, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon (EDP Sciences, Paris, 2008) pp. 1201-1204Google Scholar
  95. 95.
    S.G. Mashnik et al., J. Phys.: Conf. Ser. 41, 340 (2006)ADSGoogle Scholar
  96. 96.
    N. Metropolis et al., Phys. Rev. 110, 185 (1958)ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    N. Metropolis et al., Phys. Rev. 110, 204 (1958)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    I. Tanihata, S. Nagamiya, S. Schnetzer, H. Steiner, Phys. Lett. B 100, 121 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Cugnon
    • 1
  • A. Boudard
    • 2
  • J. -C. David
    • 2
  • S. Leray
    • 2
  • D. Mancusi
    • 2
  1. 1.AGO DepartmentUniversity of LiègeLiège 1Belgium
  2. 2.CEA/Saclay, Irfu/SPhNGif-sur-YvetteFrance

Personalised recommendations