Skip to main content

Dynamics of a vibrational energy harvester with a bistable beam: voltage response identification by multiscale entropy and “0-1” test

Abstract.

The use of bistable laminates is a potential approach to realize broadband piezoelectric-based energy harvesting by introducing elastic non-linearities to the system. In this paper the dynamic response of a piezoelectric material attached to a bistable laminate beam is examined based on the experimental measurement of the generated voltage-time series. The system was subjected to harmonic excitations and exhibited single-well and snap-through vibrations of both periodic and chaotic character. The ability to identify the vibration modes of the energy harvester is important since different levels of power are expected in each dynamic mode. We identify the dynamics of the selected system response using return maps, multiscale entropy, and “0-1” test. The potential of the approaches to identify periodic and chaotic modes and snap-through events in the non-linear bistable harvester is described.

References

  1. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (Wiley, London, 2011)

  2. R.L. Harne, K.W. Wang, Smart Mat. Struct. 22, 023001 (2013)

    ADS  Article  Google Scholar 

  3. M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, Appl. Mech. Rev. 66, 040801 (2014)

    ADS  Article  Google Scholar 

  4. S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2013)

    Article  Google Scholar 

  5. Y. Wang, L. Peng, Z. Huang, Theor. Appl. Mech. Lett. 5, 151 (2015)

    Article  Google Scholar 

  6. A.F. Arrieta, P. Hagedorn, A. Erturk, D.J. Inman, Appl. Phys. Lett. 97, 104102 (2010)

    ADS  Article  Google Scholar 

  7. A.F. Arrieta, T. Delpero, A. Bergamini, P. Ermanni, Appl. Phys. Lett. 102, 173904 (2013)

    ADS  Article  Google Scholar 

  8. A.F. Arrieta, T. Delpero, A. Bergamini, P. Ermanni, Proc. SPIE 8688, 86880G-1 (2013)

    Article  Google Scholar 

  9. D.N. Betts, C.R. Bowen, H.A. Kim, N. Gathercole, C.T. Clarke, D.J. Inman, Eur. Phys. J. ST 222, 1553 (2013)

    Article  Google Scholar 

  10. D.N. Betts, H.A. Kim, C.R. Bowen, D.J. Inman, Appl. Phys. Lett. 100, 114104 (2012)

    ADS  Article  Google Scholar 

  11. D.N. Betts, H.A. Kim, C.R. Bowen, in Proceedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (AIAA, 2012) pp. 2012--1492

  12. D.N. Betts, H.A. Kim, C.R. Bowen, Smart Mater. Res. 2012, 621364 (2012)

    Google Scholar 

  13. D.N. Betts, H.A. Kim, C.R. Bowen, D.J. Inman, Proc. SPIE 8341, 83412Q-1 (2014)

    Google Scholar 

  14. D.N. Betts, C.R. Bowen, H.A. Kim, N. Gathercole, C.T. Clarke, D.J. Inman, Proc. SPIE 8688, 86881N-1 (2013)

    Google Scholar 

  15. A.F. Arrieta, P. Ermanni, Proc. SPIE 9057, 90570Z-1 (2014)

    Article  Google Scholar 

  16. A.F. Arrieta, P. Hagedorn, A. Erturk, D.J.Inamn, in Proceedings of the ASME 2010 Conference on Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2010 (2010)

  17. M. Borowiec, A. Rysak, D.N. Betts, C.R. Bowen, H.A. Kim, G. Litak, Eur. Phys. J. Plus 129, 211 (2014)

    Article  Google Scholar 

  18. D.N. Betts, R.A. Guyer, P.-Y. Le Bas, C.R. Bowen, D. Inman, H.A. Kim, in Proceedings of 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland 2014

  19. A.F. Arrieta, P. Ermanni, D.J. Inman, M.A. Karami, in Proc. of Conference on Smart Materials, Adaptive Structures and Intelligent Systems, ASME 2014, V002T07A012

  20. A. Syta, C.R. Bowen, H.A. Kim, A. Rysak, G. Litak, Meccanica 50, 1961 (2015)

    Article  Google Scholar 

  21. A.F. Arrieta, T. Delpero, P. Ermanni, in Proc. ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2013-3137 (2013)

  22. P. Harris, C.R. Bowen, H.A. Kim, J. Multifunct. Comp. 3, 113 (2014)

    Article  Google Scholar 

  23. D.N. Betts, C.R. Bowen, D.J. Inman, P.M. Weaver, H.A. Kim, Proc. SPIE 9057, 90571E-1 (2014)

    Article  Google Scholar 

  24. O. Bilgen, Y. Wang, D.J. Inman, Mech. Syst. Signal Proc. 27, 763 (2012)

    ADS  Article  Google Scholar 

  25. H.A. Sodano, D.J. Inman, J. Intell. Mater. Syst. Struct. 16, 799 (2005)

    Article  Google Scholar 

  26. H.A. Sodano, J. Lloyd, D.J. Inman, Smart Mater. Struct. 15, 1211 (2006)

    ADS  Article  Google Scholar 

  27. G. Litak, A. Syta, M. Wiercigroch, Chaos Solitons Fractals 40, 2095 (2009)

    ADS  Article  Google Scholar 

  28. H. Kantz, T. Schreiber, Non-linear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

  29. M. Borowiec, A.K. Sen, G. Litak, J. Hunicz, G. Koszalka, A. Niewczas, Forsch. Ing. 74, 99 (2010)

    Article  Google Scholar 

  30. G. Litak, S. Schubert, G. Radons, Nonlinear Dyn. 69, 1255 (2012)

    MathSciNet  Article  Google Scholar 

  31. P. Grassberger, in Information Dynamics, edited by H. Atmanspacher, H. Scheingraber (Plenum Press, New York, 1991) pp. 15--33

  32. J.S. Richman, J.R. Moorman, Am. J. Physiol Heart Circ. Physiol. 278, H2039 (2000)

    Google Scholar 

  33. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Circulation 101, E215 (2000)

    Article  Google Scholar 

  34. M. Costa, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 89, 062102 (2002)

    Article  Google Scholar 

  35. M. Costa, C.-K. Peng, A.L. Goldberger, J.M.. Hausdorff, Physica A 330, 53 (2003)

    ADS  Article  Google Scholar 

  36. M. Costa, A.L. Goldberger, C.-K. Peng, Phys. Rev. E 71, 021906 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  37. R.A. Thuraisingham, G.A. Gottwald, Physica A 366, 323 (2006)

    ADS  Article  Google Scholar 

  38. S.-D. Wu, C.-W. Wu, S.-G. Lin, C.-C. Wang, K.-Y. Lee, Entropy 15, 1069 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  39. G.A. Gottwald, I. Melbourne, Proc. R. Soc. London A 460, 603 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  40. G.A. Gottwald, I. Melbourne, Physica D 212, 100 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  41. D. Bernardini, G. Litak, J. Braz. Soc. Mech. Sci. Eng., DOI:10.1007/s40430-015-0453-y (2016)

  42. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  43. B. Krese, E. Govekar, Nonlinear Dyn. 67, 2101 (2012)

    Article  Google Scholar 

  44. G. Litak, D. Bernardini, A. Syta, G. Rega, A. Rysak, Eur. Phys. J. ST 222, 1637 (2013)

    Article  Google Scholar 

  45. G.A. Gottwald, I. Melbourne, SIAM J. Appl. Dyn. Syst. 8, 129 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  46. I. Melbourne, G.A. Gottwald, Nonlinearity 21, 179 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  47. G.A. Gottwald, I. Melbourne, Nonlinearity 22, 1367 (2009)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Litak.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harris, P., Bowen, C.R., Kim, H.A. et al. Dynamics of a vibrational energy harvester with a bistable beam: voltage response identification by multiscale entropy and “0-1” test. Eur. Phys. J. Plus 131, 109 (2016). https://doi.org/10.1140/epjp/i2016-16109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16109-4

Keywords

  • Piezoelectric Material
  • Laminate Plate
  • Ambient Vibration
  • Piezoelectric Energy Harvest
  • Vibration Energy Harvester