Nuclear Physics with RIB’s: How it all started

Regular Article
Part of the following topical collections:
  1. Focus Point on Rewriting Nuclear Physics textbooks: 30 years with radioactive ion beam physics

Abstract.

Neutron halos were discovered through measurements of interaction cross sections and fragmentation cross sections of nuclei near the neutron drip line. Such measurements became possible with the use of radioactive ion beams (RIBs) produced though projectile fragmentations of high-energy heavy-ion collisions. RIBs were invented 30 years ago at the Bevalac facility in Berkeley. In this article, I describe how they were invented and how neutron halos were discovered. What happened at that time was a series of small serendipities guiding us to the present prosperous field of RIB science.

References

  1. 1.
    D.A. Bromley (Editor), Treatise on Heavy-Ion Science, Vol. 8: Nuclei Far From Stability (Springer, Berlin, 1989)Google Scholar
  2. 2.
    H.H. Heckmann, D.E. Greiner, P.J. Lindstrom, F.S. Bieser, Phys. Rev. Lett. 28, 926 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    M. Langevin et al., Phys. Lett. B 150, 71 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    H. Sakurai et al., Phys. Lett. B 448, 180 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    E.M. Friedlander et al., Phys. Rev. Lett. 45, 1084 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    E.M. Friedlander et al., Phys. Rev. C 27, 1489 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    T.J.M. Symons et al., Phys. Rev. Lett. 52, 982 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    I. Tanihata, Hyperfine Interact. 21, 251 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    D.H. Wilkinson, Hyperfine Interact. 21, 265 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    J. Jaros et al., Phys. Rev. C 18, 2273 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    J. Alonso, Proceedings of the First International Conference on Radioactive Nuclear Beams (Berkeley, 1990) p. 112Google Scholar
  13. 13.
    J.P. Dufour et al., Nucl. Instrum. Methods Phys. Res. A 248, 267 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    I. Tanihata et al., Phys. Lett. B 160, 380 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    A. Goldhaber, Phys. Lett. B 53, 306 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kobayashi et al., Phys. Lett. B 232, 51 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    K. Ieki et al., Phys. Rev. Lett. 70, 730 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    S. Shimoura et al., Phys. Lett. B 348, 29 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    M. Zinser et al., Nucl. Phys. A 619, 151 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001) and references thereinADSCrossRefGoogle Scholar
  26. 26.
    I. Tanihata, J. Phys. G: Nucl. Part. Phys. 22, 157 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    M. Fukuda et al., Phys. Lett. B 268, 339 (1991)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Egelhof et al., Euro. Phys. J. A 15, 27 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    I. Tanihata, H. Savajols, R. Kanungo, Progr. Part. Nucl. Phys. 68, 215 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    I. Tanihata et al., Phys. Lett. B 206, 592 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    I. Tanihata et al., Phys. Lett. B 289, 261 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    T. Suzuki et al., Phys. Rev. Lett. 75, 3241 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    M.V. Zhukov et al., Phys. Rep. 4, 151 (1993)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    V. Efimof, Phys. Lett. B 33, 563 (1970)ADSCrossRefGoogle Scholar
  36. 36.
    K. Ikeada, Nucl Phys. A 538, 355 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    T. Kobayashi et al., Nucl. Phys. A 538, 343c (1992)ADSCrossRefGoogle Scholar
  38. 38.
    H.G. Bohlen et al., Z. Phys. A 351, 7 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    A. Korsheninnikov et al., Phys. Rec. C 53, R527 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    R. Kanungo et al., Phys. Rev. Lett. 114, 192502 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000) as the first paper of the new magic numbersADSCrossRefGoogle Scholar
  42. 42.
    T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. C 78, 024305 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    T. Myo, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, Progr. Theor. Exp. Phys. 2015, 073D02 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physics and Nuclear Energy Engineering, and International Research Center for Nuclei and Particles in CosmosBeihang UniversityBeijingChina
  2. 2.The Research Center of Nuclear PhysicsOsaka UniversityOsakaJapan

Personalised recommendations