Skip to main content
Log in

New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies

From charged particle density to jet quenching

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- \( p_{T}\) hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central \(Au+Au\) collisions at \( \sqrt{s_{NN}} = 200\) GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from \(Au+Au\) at \( \sqrt{s_{NN}} = 200\) GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, \( \eta/s\approx 0.12\). However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small \( p+A\), \( d+ Au\) and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC is on detailed exploration of the properties of this new state of nuclear matter, the QGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Shuryak, Phys. Rep. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. McLerran, Rev. Mod. Phys. 58, 1021 (1986)

    Article  ADS  Google Scholar 

  3. M. Hindmarsh, O. Philipsen, Phys. Rev. D 71, 08730 (2005)

    Article  Google Scholar 

  4. http://www.jicfus.jp/en/promotion/pr/mj/guido-cossu/

  5. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 11, 077 (2010)

    Article  ADS  Google Scholar 

  6. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 370, 99 (2014)

    Article  ADS  Google Scholar 

  7. A. Bazavov A. Bazavov, T. Bhattacharya, C. DeTar, H. Ding, S. Gottlieb, R. Gupta, P. Hegde, U.M. Heller, F. Karsch, E. Laermann et al., Phys. Rev. D 90, 094503 (2014)

    Article  ADS  Google Scholar 

  8. H.G. Baumgardt, J.U. Schott, Y. Sakamoto, E. Schopper, H. Stöcker, J. Hofmann, W. Scheid, W. Greiner, Z. Phys. A 273, 359 (1975)

    Article  ADS  Google Scholar 

  9. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  10. PHENIX Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)

    Article  Google Scholar 

  11. PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  12. BRAHMS Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  13. STAR Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  14. M. Harrison, T. Ludlam, S. Ozaki, Nucl. Instrum. Methods Phys. Res. A 499, 235 (2003)

    Article  ADS  Google Scholar 

  15. http://www.agsrhichome.bnl.gov/RHIC/Runs/

  16. I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, Series: C-A/AP - Report Number: C-A/AP/455, BNL-97226-2006-IR

  17. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  18. ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 114, 072302 (2015)

    Article  ADS  Google Scholar 

  19. ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 734, 31 (2014)

    Article  Google Scholar 

  20. CMS Collaboration (V. Khachatryan et al.), JHEP 09, 091 (2010)

    Google Scholar 

  21. ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 110, 182302 (2013)

    Article  ADS  Google Scholar 

  22. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 726, 164 (2013)

    Article  ADS  Google Scholar 

  23. ALICE Collaboration (L. Milano), J. Phys. Conf. Ser. 509, 012105 (2014)

    Article  ADS  Google Scholar 

  24. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 232301 (2007)

    Article  Google Scholar 

  25. X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008)

    Article  ADS  Google Scholar 

  26. Y. Liu, Q. Zhen, N. Xu, P. Zhuang, Phys. Lett. B 678, 72 (2009)

    Article  ADS  Google Scholar 

  27. R. Vogt, Phys. Rev. C 71, 054902 (2005)

    Article  ADS  Google Scholar 

  28. D. Kharzeev, C. Lourenco, M. Nardi, H. Satz, Z. Phys. C 74, 307 (1997)

    Article  Google Scholar 

  29. K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 04, 065 (2009)

    Article  ADS  Google Scholar 

  30. J.L. Nagle, A.D. Frawley, L.A. Linden Levy, M.G. Wysocki, Phys. Rev. C 84, 044911 (2011)

    Article  ADS  Google Scholar 

  31. PHOBOS Collaboration (R. Nouicer et al.), Eur. Phys. J. C 33, S606 (2004)

    Article  Google Scholar 

  32. S. Ahmad, A. Ahmad, A. Chandra, M. Zafar, M. Irfan, Adv. High Energy Phys. 2013, 836071 (2013)

    Article  Google Scholar 

  33. PHOBOS Collaboration (R. Nouicer), QCD and Hadronic Interactions, edited by Tran Thanh Van (The Gioi Publishers, Hanoi, 2002) pp. 381

  34. R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)

    Article  ADS  Google Scholar 

  35. P. Shukla, Phys. Rev. C 67, 054607 (2003)

    Article  ADS  Google Scholar 

  36. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007)

    Article  ADS  Google Scholar 

  37. Q.Y. Shou, Y.G. Ma, P. Sorensen, A.H. Tang, F. Videbk, H. Wang, Phys. Lett. B 749, 215 (2015)

    Article  ADS  Google Scholar 

  38. R. Nouicer, Habilitation à Diriger des Recherches, University of Strasbourg, 2013 HDR/N^o 293, https://tel.archives-ouvertes.fr/tel-00925262

  39. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 502303 (2003)

    Google Scholar 

  40. PHOBOS Collaboration (R. Nouicer et al.), AIP Conf. Proc. 842, 86 (2006)

    Article  Google Scholar 

  41. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 102, 142301 (2009)

    Article  Google Scholar 

  42. NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)

    Article  Google Scholar 

  43. NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 69, 024902 (2004)

    Article  Google Scholar 

  44. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010)

    Article  ADS  Google Scholar 

  45. P. Tribedy, R. Venugopalan, Phys. Lett. B 710, 125 (2012)

    Article  ADS  Google Scholar 

  46. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  47. A. Kovner, M. Lublinsky, Phys. Rev. D 92, 034016 (2015)

    Article  ADS  Google Scholar 

  48. PHOBOS Collaboration (R. Nouicer et al.), J. Phys. G 30, S113 (2004)

    Article  Google Scholar 

  49. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 93, 082301 (2004)

    Article  Google Scholar 

  50. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 72, 031901(R) (2005)

    Article  Google Scholar 

  51. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 83, 024913 (2011)

    Article  Google Scholar 

  52. PHOBOS Collaboration (R. Nouicer et al.), Nucl. Instrum. Methods Phys. Res. A 461, 143 (2001)

    Article  Google Scholar 

  53. PHOBOS Collaboration (B.B. Back et al.), Nucl. Instrum. Methods Phys. Res. A 499, 603 (2003)

    Article  ADS  Google Scholar 

  54. T.S. Ullrich, Eur. Phys. J. A 19, s01 (2004)

    Article  Google Scholar 

  55. R. Hagedorn, Suppl.Nuovo Cimento 3, 150 (1965)

    Google Scholar 

  56. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 90, 102301 (2003)

    Article  ADS  Google Scholar 

  57. A. Andronic et al., Nucl. Phys. A 904-905, 535c (2013)

    Article  ADS  Google Scholar 

  58. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 93, 102301 (2004)

    Article  ADS  Google Scholar 

  59. STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 034910 (2011)

    Article  Google Scholar 

  60. R. Stock, Proc. Sci. PoS CPOD2006, 040 (2006)

    Google Scholar 

  61. P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2004) p. 491--599

  62. M. Kliemant, R. Sahoo, T. Schuster, R. Stock, The Physics of the Quark-Gluon Plasma, in Lectures Notes in Physics, Vol. 785 (2010) p. 23

  63. F. Becattini, Nucl. Phys. A 702, 336 (2002)

    Article  ADS  Google Scholar 

  64. F. Karsch, E. Laermann, A. Peikert, Phys. Lett. B 478, 447 (2000)

    Article  ADS  Google Scholar 

  65. U. Heinz, G. Kestin, PoS CPOD2006, 038 (2006)

    Google Scholar 

  66. H. Stöcker, J.A. Maruhn, W. Greiner, Phys. Rev. Lett. 44, 725 (1980)

    Article  ADS  Google Scholar 

  67. H. Stöcker, LP Csernai, G. Graebner, G. Buchwald, H. Kruse, RY Cusson, J.A. Maruhn, W. Greiner, Phys. Rev. C 25, 1873 (1982)

    Article  ADS  Google Scholar 

  68. H. Stöcker, W. Greiner et al., Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  69. W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)

    Article  ADS  Google Scholar 

  70. NA49 Collaboration (C. Alt et al.), Phys. Rev. C 68, 034903 (2003)

    Article  Google Scholar 

  71. PHOBOS Collaboration (R. Nouicer et al.), J. Phys. G 34, S887 (2007)

    Article  ADS  Google Scholar 

  72. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 94, 122303 (2005)

    Article  Google Scholar 

  73. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 98, 242302 (2007)

    Article  Google Scholar 

  74. A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)

    Article  ADS  Google Scholar 

  75. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010)

    Article  ADS  Google Scholar 

  76. L.X. Han, G.L. Ma, Y.G. Ma, X.Z. Cai, J.H. Chen, S. Zhang, Phys. Rev. C 84, 064907 (2011)

    Article  ADS  Google Scholar 

  77. T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006)

    Article  ADS  Google Scholar 

  78. Lie-Wen Chen, Che Ming Ko, Phys. Lett. B 634, 205 (2006)

    Article  ADS  Google Scholar 

  79. FOPI Collaboration (A. Andronic et al.), Phys. Lett. B 612, 173 (2005)

    Article  ADS  Google Scholar 

  80. PHOBOS Collaboration (R. Nouicer), in Proceeding of the 22nd Lake Louise Winter Institute, Fundamental Interactions, (Word Scientific, 2007) p. 373

  81. N. Borghini, U.A. Wiedemann, J. Phys. G 35, 023001 (2008)

    Article  ADS  Google Scholar 

  82. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010)

    Article  ADS  Google Scholar 

  83. ALICE Collaboration (R. Snellings et al.), J. Phys. G: Nucl. Part. Phys. 38, 124013 (2011)

    Article  ADS  Google Scholar 

  84. STAR Collaboration (Md. Nasim et al.), Nucl. Phys. A 904, 413c (2013)

    Google Scholar 

  85. J. Adams et al., Phys. Lett. B 612, 181 (2005)

    Article  ADS  Google Scholar 

  86. J. Adams et al., Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  87. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 122301 (2005)

    Article  Google Scholar 

  88. STAR Collaboration (J. Adams et al.), Phys. Rev. C 77, 054901 (2008)

    Article  Google Scholar 

  89. ALICE Collaboration (K. Aamodt et al.), JHEP 06, 190 (2015)

    ADS  Google Scholar 

  90. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 89, 034915 (2014)

    Article  ADS  Google Scholar 

  91. C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013)

    Article  ADS  Google Scholar 

  92. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012)

    Article  ADS  Google Scholar 

  93. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 86, 034908 (2012)

    Article  ADS  Google Scholar 

  94. B. Schenke, R. Venugopalan, Phys. Rev. Lett. 113, 102301 (2014)

    Article  ADS  Google Scholar 

  95. STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005)

    Article  Google Scholar 

  96. J. Xu, J. Liao, M. Gyulassy, Chin. Phys. Lett. 32, 092501 (2015)

    Article  ADS  Google Scholar 

  97. D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)

    Article  ADS  Google Scholar 

  98. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072301 (2003)

    Article  Google Scholar 

  99. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 241803 (2003)

    Article  Google Scholar 

  100. D. d’Enterria, Phys. Lett. B 596, 32 (2004)

    Article  ADS  Google Scholar 

  101. J.W. Cronin, H.J. Frisch, M.J. Shochet, J.P. Boymond, P.A. Piroué, R.L. Sumner, Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  102. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 93, 102301 (2004)

    Article  ADS  Google Scholar 

  103. STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)

    Article  ADS  Google Scholar 

  104. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 98, 172302 (2007)

    Article  Google Scholar 

  105. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 96, 202301 (2006)

    Article  Google Scholar 

  106. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072303 (2003)

    Article  Google Scholar 

  107. PHENIX Collaboration (R. Nouicer et al.), Nucl. Phys. A 862, 62 (2011)

    ADS  Google Scholar 

  108. PHENIX Collaboration (R. Nouicer et al.), J. Phys.: Conf. Ser. 420, 012021 (2013)

    ADS  Google Scholar 

  109. CMS Collaboration, Eur. Phys. J. C 72, 1945 (2012)

    Article  ADS  Google Scholar 

  110. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  111. M. Gyulassy et al., Phys. Lett. B 243, 432 (1990)

    Article  ADS  Google Scholar 

  112. BRAHMS Collaboration (J.J. Gaardhoje et al.), Nucl. Phys. A 734, 13 (2004)

    Article  Google Scholar 

  113. M.H. Thoma, M. Gyulassy et al., Nucl. Phys. B 351, 491 (1991)

    Article  ADS  Google Scholar 

  114. A. Accardi, N. Armesto, Contribution to the CERN Yellow report on Hard Probes in Heavy Ion Collisions at the LHC (2002)

  115. PHENIX Collaboration (S.S. Alder et al.), Phys. Rev. Lett. 96, 032301 (2006)

    Article  Google Scholar 

  116. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 94, 062301 (2005)

    Article  Google Scholar 

  117. I. Vitev, Miklos Gyulassy, Nucl. Phys. A 715, 779 (2003)

    Article  ADS  Google Scholar 

  118. X.N. Wang, Phys. Lett. B 595, 165 (2004)

    Article  ADS  Google Scholar 

  119. I. Vitev, M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002)

    Article  ADS  Google Scholar 

  120. I. Vitev, J. Phys. G 30, S791 (2004)

    Article  ADS  Google Scholar 

  121. UA2 Collaboration (M. Banner et al.), Phys. Lett. B 118, 203 (1982)

    Article  Google Scholar 

  122. UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 123, 115 (1983)

    Article  ADS  Google Scholar 

  123. CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 62, 613 (1989)

    Article  Google Scholar 

  124. CDF Collaboration (F. Abe et al.), Phys. Rev. D 41, 1722 (1990)

    Google Scholar 

  125. UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 173 (1982)

    Article  Google Scholar 

  126. CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 65, 968 (1990)

    Article  Google Scholar 

  127. Axial Field Spectrometer Collaboration (T. Akesson et al.), Phys. Lett. B 123, 133 (1983)

    Article  ADS  Google Scholar 

  128. UA2 Collaboration (J.A. Appel et al.), Phys. Lett. B 160, 349 (1985)

    Article  ADS  Google Scholar 

  129. UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 172, 461 (1986)

    Article  Google Scholar 

  130. PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 88, 022301 (2002)

    Google Scholar 

  131. STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 89, 202301 (2002)

    Article  Google Scholar 

  132. STAR Collaboration (P. Jacobs et al.), Prog. Nucl. Phys. 54, 443 (2005)

    Article  ADS  Google Scholar 

  133. STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 90, 082302 (2003)

    Article  Google Scholar 

  134. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)

    Article  Google Scholar 

  135. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 152301 (2005)

    Article  Google Scholar 

  136. M. Gyulassy, M. Plümer, Nucl. Phys. A 527, 641 (1991)

    Article  ADS  Google Scholar 

  137. X. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)

    Article  ADS  Google Scholar 

  138. X.N. Wang, Phys. Rev. C 61, 064910 (2000)

    Article  ADS  Google Scholar 

  139. I. Vitev, Phys. Lett. B 562, 36 (2003)

    Article  ADS  Google Scholar 

  140. J.w. Qiu, I. Vitev, Phys. Rev. Lett. 93, 262301 (2004)

    Article  ADS  Google Scholar 

  141. D. Kharzeev, E. Levin, L. McLerran, Phys. Lett. B 561, 93 (2003)

    Article  ADS  Google Scholar 

  142. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 072302 (2003)

    Article  Google Scholar 

  143. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 072303 (2003)

    Article  Google Scholar 

  144. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)

    Article  Google Scholar 

  145. BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. Lett. 91, 072305 (2003)

    Article  Google Scholar 

  146. M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, in Quark Gluon Plasma 3, edited by R.C. Hwa and X.-N. Wang (World Scientific, Singapore, 2004) p. 123

  147. S.J. Brodsky, SLAC-PUB-9022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nouicer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouicer, R. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. Eur. Phys. J. Plus 131, 70 (2016). https://doi.org/10.1140/epjp/i2016-16070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16070-2

Keywords

Navigation