Skip to main content
Log in

Unsteady flow of thin nanoliquid film over a stretching sheet in the presence of thermal radiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Unsteady two-dimensional flow of a thin nanoliquid film over an impulsively stretching sheet is studied in the presence of thermal radiation. It is assumed that the sheet is either heating or cooling along the stretching direction. The nonlinear governing set of equations is solved analytically by the singular-perturbation technique. It is observed that the film thinning rate decreases with the increase of the nanoparticle volume fraction. It is also found that the rate of film thinning decreases with the increase of the radiation parameter in case of heating and the opposite phenomenon is observed for cooling of the sheet. The film thinning rate increases with the increase of the nanolayer thickness but decreases with the increase of the nanoparticle radius when the sheet is heated. Moreover, it is observed that the temperature gradient Tz changes its sign within the film in the presence of thermal radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  2. C.Y. Wang, Z. Angew. Math. Phys. 39, 177 (1988)

    Article  MATH  Google Scholar 

  3. H.I. Andersson, O.R. Hansen, B. Holmedal, Int. J. Heat Mass Transfer 37, 659 (1994)

    Article  MATH  Google Scholar 

  4. K.R. Rajagopal, T.Y. Na, A.S. Gupta, Rheol. Acta. 23, 213 (1984)

    Article  Google Scholar 

  5. M.E.H. Hafidzuddin, R. Nazar, N.M. Arifin, I. Pop, Int. J. Heat Mass Transfer 56, 109 (2014)

    Article  Google Scholar 

  6. T. Hayat, M. Sajid, Int. J. Heat Mass Transfer 50, 75 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Raptis, C. Perdikis, Z. Angew. Math. Mech. 78, 277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.A. Seddeek, Comput. Mater. Sci. 37, 624 (2006)

    Article  Google Scholar 

  9. D. Pal, H. Mondal, Energy Converg. Manag. 62, 102 (2012)

    Article  Google Scholar 

  10. S. Mukhopadhyay, G.C. Layek, Int. J. Heat Mass Transfer 51, 2167 (2008)

    Article  MATH  Google Scholar 

  11. Z. Abbas, T. Hayat, Int. J. Heat Mass Transfer 51, 1024 (2008)

    Article  MATH  Google Scholar 

  12. C.Y. Wang, Q. Appl. Math. 48, 601 (1990)

    MATH  Google Scholar 

  13. H.I. Andersson, J.B. Aarseth, N. Braud, B.S. Dandapat, J. Non-Newtonian Fluid Mech. 62, 1 (1996)

    Article  Google Scholar 

  14. K. Vajravelu, P.V. Prasad, Ng Chiu-On, Commun. Nonlinear Sci. Numer. Simul. 17, 4163 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. C.H. Chen, Heat Mass Transfer 39, 791 (2003)

    Article  ADS  Google Scholar 

  16. B.S. Dandapat, B. Santra, H.I. Andersson, Int. J. Heat Mass Transfer 46, 3009 (2003)

    Article  MATH  Google Scholar 

  17. B.S. Dandapat, B. Santra, K. Vejravelu, Int. J. Heat Mass Transfer 50, 991 (2007)

    Article  MATH  Google Scholar 

  18. I.C. Liu, H.I. Andersson, Int. J. Therm. Sci. 47, 766 (2008)

    Article  Google Scholar 

  19. M.S. Abel, J. Tawade, N.M. Nandeppanavar, Int. J. Non-Linear Mech. 44, 990 (2009)

    Article  MATH  ADS  Google Scholar 

  20. B.S. Dandapat, A. Kitamura, B. Santra, Z. Angew. Math. Phys. 57, 623 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. B.S. Dandapat, S. Maity, Phys. Fluids 18, 102101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  22. B.S. Dandapat, S. Maity, A. Kitamura, Int. J. Non-Linear Mech. 43, 880 (2008)

    Article  MATH  ADS  Google Scholar 

  23. S. Maity, Int. J. Heat Mass Transfer 70, 819 (2014)

    Article  Google Scholar 

  24. S.U.S. Choi, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition

  25. W. Yu, S.U.S. Choi, J. Nanopart. Res. 5, 167 (2003)

    Article  Google Scholar 

  26. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5796 (2009)

    Article  MATH  Google Scholar 

  27. W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)

    Article  MATH  Google Scholar 

  28. P. Rana, R. Bhargava, Commun. Nonlinear Sci. Numer. Sim. 17, 212 (2012)

    Article  MathSciNet  Google Scholar 

  29. M.A.A. Hamad, Int. Commun. Heat Mass Transfer 38, 487 (2011)

    Article  Google Scholar 

  30. K. Vajravelu, K.V. Prasad, J. Lee, C. Lee, I. Pop, R.A. VanGorder, Int. J. Therm. Sci. 50, 843 (2011)

    Article  Google Scholar 

  31. A.R. Ahmadi, A. Zahmatkesh, M. Hatami, D.D. Ganji, Powder Technol. 258, 125 (2014)

    Article  Google Scholar 

  32. W.A. Khan, A. Aziz, Int. J. Therm. Sci. 50, 2154 (2011)

    Article  Google Scholar 

  33. M.M. Rashidi, N. Vishnu Ganesh, A.K. Abdul Hakeem, B. Ganga, J. Mol. Liq. 198, 234 (2014)

    Article  Google Scholar 

  34. R. Dhanai, P. Rana, L. Kumar, Powder Technol. 273, 62 (2015)

    Article  Google Scholar 

  35. Y. Lin, L. Zheng, G. Chen, Powder Technol. 274, 324 (2015)

    Article  Google Scholar 

  36. M. Narayana, P. Sibanda, Int. J. Heat Mass Transfer 55, 7552 (2012)

    Article  Google Scholar 

  37. H. Xu, I. Pop, X.C. You, Int. J. Heat Mass Transfer 60, 646 (2013)

    Article  Google Scholar 

  38. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, Cambridge, 1904)

  39. H.F. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  40. M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S. Unsteady flow of thin nanoliquid film over a stretching sheet in the presence of thermal radiation. Eur. Phys. J. Plus 131, 49 (2016). https://doi.org/10.1140/epjp/i2016-16049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16049-y

Keywords

Navigation