Skip to main content

The Jülich high-brilliance neutron source project

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 31 May 2019

This article has been updated

Abstract.

With the construction of the European Spallation Source ESS, the European neutron user community is looking forward to the brightest source worldwide. At the same time there is an ongoing concentration of research with neutrons to only a few but very powerful neutron facilities. Responding to this situation the Jülich Centre for Neutron Science has initiated a project for a compact accelerator driven high-brilliance neutron source, optimized for neutron scattering on small samples and to be realized at reasonable costs. The project deals with the optimization of potential projectiles, target and moderator concepts, versatile accelerator systems, cold sources, beam extraction systems and optimized instrumentation. A brief outline of the project, the achievements already reached, will be presented, as well as a vision for the future neutron landscape in Europe.

This is a preview of subscription content, access via your institution.

Change history

  • 31 May 2019

    A missing citation was found in the original article regarding the correct authorship of fig. 11. The two figures used are displayed with permission from K.B. Grammer et al. article Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission [1] (figs. 1 and 6).

References

  1. G. Mank, G. Bauer, F. Mulhauser, Rev. Accl. Sci. Tech. 4, 219 (2011)

    Article  Google Scholar 

  2. P.-E. Doege, MSc thesis (RWTH Aachen, 2015)

  3. S. Kamada, T. Itoga, Y. Unno, W. Takahashi, T. Oishi, M. Baba, J. Korean Phys. Soc. 59, 1676 (2011)

    Article  Google Scholar 

  4. J. Knaster, P. Cara, S. Chel, A. Facco, J. Molla, H. Suzuki, Proceedings of IPAC2013, 1090 (2013)

  5. I. Bustinduy, F.J. Bermejo, Phys. Proc. 60, 157 (2014)

    Article  Google Scholar 

  6. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  7. J. Esposito, P. Colautti, S. Fabrisiev, A. Gervash, R. Giniyatulin, V.N. Lomasov, A. Makhankov, I. Mazul, A. Pisent, A. Pokrovsky, M. Rumyantsev, V. Tanchuk, L. Tecchio, Appl. Radiat. Isot. 67, S270 (2009)

    Article  Google Scholar 

  8. F. Sordo, S. Terron, M. Magan, G. Muhrer, A. Ghiglino, F. Martinez, P.J. de Vicente, R. Vivanco, J.M. Perlado, F.J. Bermejo, Nucl. Instrum. Methods A 707, 1 (2013)

    Article  ADS  Google Scholar 

  9. F. Sordo, F. Fernandez-Alonso, M.A. Gonzales, A. Ghiglino, M. Magan, S. Terron, F. Martinez, P.J. de Vicente, R. Vivanco, F.J. Bermejo, J.M. Perlado, J. Phys.: Conf. Ser. 549, 012001 (2014)

    ADS  Google Scholar 

  10. Y. Yamagata, K. Hirota, J. Ju, S. Wang, S. Morita, J. Kato, Y. Otake, A. Taketani, Y. Seki, M. Yamada, H. Ota, U. Bautista, Q. Jia, J. Radioanal. Nucl. Chem. 305, 787 (2015)

    Article  Google Scholar 

  11. Y. Yamagata, K. Hirota, J.-M. Ju, RIKEN No. 23773, PCT/JP2013/056188 (2013)

  12. S. Mattauch, U. Rücker, Schr. Forschungszent. Jülich Schlüsseltechnol. 28, 10 (2011)

    Google Scholar 

  13. J. Van Kranendonk, Solid Hydrogen (Plenum Press, New York, 1983)

  14. H. Tagaziria, W. Hansen, Rad. Protect. Dosim. 107, 73 (2003)

    Article  Google Scholar 

  15. Y. Milenko, R. Sibileva, M. Strzhemechny, J. Low Temp. Phys. 107, 77 (1997)

    Article  ADS  Google Scholar 

  16. D.H. Weitzel, W.V. Loebenstein, J.W. Draper, O.E. Park, J. Res. Natl. Bur. Stand. 60, 221 (1958)

    Article  Google Scholar 

  17. K. Batkov, A. Takibayev, I. Zanini, F. Mezei, Nucl. Instrum. Methods A 729, 500 (2013)

    Article  ADS  Google Scholar 

  18. F. Mezei, L. Zanini, A. Takibayev, K. Batkov, E. Klinkby, E. Pitcher, T. Schnfeldt, J. Neutron Res. 17, 101 (2014)

    Google Scholar 

  19. J. Stahn, U. Filges, T. Panzner, Eur. Phys. J. Appl. Phys. 58, 11001 (2012)

    Article  ADS  Google Scholar 

  20. A. Houben, W. Schweika, Th. Brückel, R. Dronskowski, Nucl. Instrum. Methods A 680, 124 (2012)

    Article  ADS  Google Scholar 

  21. http://phi.phys.nagoya-u.ac.jp/JCANS/index.html

  22. http://www.helmholtz.de/forschung/materie/from_matter_to_materials_and_life/

  23. http://www.helmholtz.de/en/research/research_infrastructures/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gutberlet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rücker, U., Cronert, T., Voigt, J. et al. The Jülich high-brilliance neutron source project. Eur. Phys. J. Plus 131, 19 (2016). https://doi.org/10.1140/epjp/i2016-16019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16019-5

Keywords

  • Thermal Neutron
  • Neutron Source
  • Neutron Beam
  • Neutron Yield
  • Giant Dipole Resonance