Abstract
In this paper we will be concerned with some combinatorial methods that enable us to determine the number of spanning trees of a graph. Although these methods apply only to rather restricted classes of graphs, sometimes strikingly simple calculations reveal the number of spanning trees of seemingly complex graphs, we presented techniques to derive spanning trees recursions in graphs. Then, we gave the generalization for these techniques. Finally, making use of our results, we investigated the complexity of some new graphs.
Similar content being viewed by others
References
G.G. Kirchhoff, Ann. Phg. Chem. 72, 497 (1847).
E. Teufl, S. Wanger, J. Phys. A 43, 491 (2010).
F.Y. Wu, J. Phys. A 10, 113 (1977).
J.L. Felker, R. Lyons, J. Phys. A 36, 8361 (2003).
R. Shrock, F.Y. Wu, J. Phys. A 33, 3881 (2000).
S.N. Daoud, Eur. J. Phys. Plus 129, (2014).
S.N. Daoud, J. Math. Probl. Eng. 2013, 820549 (2013).
S.N. Daoud, J. Math. Probl. Eng. 2014, 965105 (2014).
Xue-rong Yang, Talip Acenjian, Discrete Math. 169, 293 (1997).
D. Cvetkoviě, M. Doob, H. Sachs, Spectra of graphs: Theory and applications, third edition (Johann Ambrosius Barth, Heidelberg, 1995).
F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in Notes from New York Graph Theory Day V (New York Academy Sciences, New York, 1982) p. 16.
F. Zhang, X. Yong, Sci. China Ser. A 43, 264 (1999).
G. Baron, H. Prodinger, R. Tichy, F. Boesch, J. Wang, Fibonacci Quart. 23, 258 (1985).
F.T. Boesch, J. Graph Theory 10, 339 (1986).
F.T. Boesch, A. Salyanarayana in C.L. Suffel, Networks 54, 99 (2009).
T. Atajan, H. Inaba, Network reliability analysis by counting the number of spanning trees, in ISCIT 2004, IEEE International symposium on Communication and Information technology, Vol. 1 (IEEP, 2004) pp. 601--604.
W. Feussner, Ann. Phys. (Leipzig) 9, 1304 (1902).
W. Feussner, Ann. Phys. (Leipzig) 15, 385 (1904).
G.A. Cayley, Quart. J. Pure Appl. Math. 23, 376 (1889).
H. Prüfer, Arch. Math. Phys. 27, 742 (1918).
C.D. Godsil, G.F. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001).
N. Biggs, Algebraic Graph Theory, 2nd edition (Cambridge University Press, Cambridge, 1993) pp. 205.
F.T. Boesch, H. Prodinger, J. Graphs Combinat. 2, 191 (1986).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Daoud, S.N. The deletion-contraction method for counting the number of spanning trees of graphs. Eur. Phys. J. Plus 130, 217 (2015). https://doi.org/10.1140/epjp/i2015-15217-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2015-15217-y