Skip to main content
Log in

The deletion-contraction method for counting the number of spanning trees of graphs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper we will be concerned with some combinatorial methods that enable us to determine the number of spanning trees of a graph. Although these methods apply only to rather restricted classes of graphs, sometimes strikingly simple calculations reveal the number of spanning trees of seemingly complex graphs, we presented techniques to derive spanning trees recursions in graphs. Then, we gave the generalization for these techniques. Finally, making use of our results, we investigated the complexity of some new graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Kirchhoff, Ann. Phg. Chem. 72, 497 (1847).

    Article  ADS  Google Scholar 

  2. E. Teufl, S. Wanger, J. Phys. A 43, 491 (2010).

    Article  Google Scholar 

  3. F.Y. Wu, J. Phys. A 10, 113 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  4. J.L. Felker, R. Lyons, J. Phys. A 36, 8361 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Shrock, F.Y. Wu, J. Phys. A 33, 3881 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. S.N. Daoud, Eur. J. Phys. Plus 129, (2014).

  7. S.N. Daoud, J. Math. Probl. Eng. 2013, 820549 (2013).

    MathSciNet  Google Scholar 

  8. S.N. Daoud, J. Math. Probl. Eng. 2014, 965105 (2014).

    MathSciNet  Google Scholar 

  9. Xue-rong Yang, Talip Acenjian, Discrete Math. 169, 293 (1997).

    Article  MathSciNet  Google Scholar 

  10. D. Cvetkoviě, M. Doob, H. Sachs, Spectra of graphs: Theory and applications, third edition (Johann Ambrosius Barth, Heidelberg, 1995).

  11. F.T. Boesch, J.F. Wang, A conjecture on the number of spanning trees in the square of a cycle, in Notes from New York Graph Theory Day V (New York Academy Sciences, New York, 1982) p. 16.

  12. F. Zhang, X. Yong, Sci. China Ser. A 43, 264 (1999).

    MathSciNet  Google Scholar 

  13. G. Baron, H. Prodinger, R. Tichy, F. Boesch, J. Wang, Fibonacci Quart. 23, 258 (1985).

    MathSciNet  Google Scholar 

  14. F.T. Boesch, J. Graph Theory 10, 339 (1986).

    Article  MathSciNet  Google Scholar 

  15. F.T. Boesch, A. Salyanarayana in C.L. Suffel, Networks 54, 99 (2009).

    Article  MathSciNet  Google Scholar 

  16. T. Atajan, H. Inaba, Network reliability analysis by counting the number of spanning trees, in ISCIT 2004, IEEE International symposium on Communication and Information technology, Vol. 1 (IEEP, 2004) pp. 601--604.

  17. W. Feussner, Ann. Phys. (Leipzig) 9, 1304 (1902).

    Article  ADS  Google Scholar 

  18. W. Feussner, Ann. Phys. (Leipzig) 15, 385 (1904).

    Article  ADS  Google Scholar 

  19. G.A. Cayley, Quart. J. Pure Appl. Math. 23, 376 (1889).

    Google Scholar 

  20. H. Prüfer, Arch. Math. Phys. 27, 742 (1918).

    Google Scholar 

  21. C.D. Godsil, G.F. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001).

  22. N. Biggs, Algebraic Graph Theory, 2nd edition (Cambridge University Press, Cambridge, 1993) pp. 205.

  23. F.T. Boesch, H. Prodinger, J. Graphs Combinat. 2, 191 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Daoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, S.N. The deletion-contraction method for counting the number of spanning trees of graphs. Eur. Phys. J. Plus 130, 217 (2015). https://doi.org/10.1140/epjp/i2015-15217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15217-y

Keywords

Navigation