Niche construction game cancer cells play

Abstract

Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.B. Beltman, P. Haccou, C. ten Cate, Evolution 58, 35 (2004).

    Article  Google Scholar 

  2. 2.

    F.J. Odling-Smee, K.N. Laland, M.F. Feldman, Niche Construction: The Neglected Process in Evolution, in Monographs in Population Biology (Princeton University Press, 2003).

  3. 3.

    F.J. Odling-Smee, D. Erwin, E. Palkovacs, M.W. Feldman, K.N. Laland, Quart. Rev. Biol. 88, 3 (2013).

    Article  Google Scholar 

  4. 4.

    F.J. Odling-Smee, J. Theor. Biol. 2, 276 (2007).

    Article  Google Scholar 

  5. 5.

    K.N. Laland, F.J. Odling-Smee, S. Myles, Nat. Rev. Genet. 11, 137 (2010).

    Article  Google Scholar 

  6. 6.

    M.F. Boni, M.W. Feldman, Evolution 59, 477 (2005).

    Google Scholar 

  7. 7.

    Y. Kunisaki, I. Bruns, C. Scheiermann, S. Pinho, J. Ahmed, D. Zhang, M. Mizoguchi, Q. Wei, D. Lucas, K. Ito, J.C. Mar, A. Bergman, P.S. Frenette, Nature 502, 637 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    D. Hanahan, R.A. Weinberg, Cell 144, 646 (2011).

    Article  Google Scholar 

  9. 9.

    M. Greaves, C.C. Maley, Nature 481, 306 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Nature 414, 105 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    N.D. Marjanovic, R.A. Weinberg, C.L. Chaffer, Clin. Chem. 59, 168 (2013).

    Article  Google Scholar 

  12. 12.

    T. Borovski, F. De Sousa E Melo, L. Vermeulen, J.P. Medema, Cancer Res. 71, 634 (2011).

    Article  Google Scholar 

  13. 13.

    L. Vermeulen, F. De Sousa E Melo, M. van der Heijden, K. Cameron, J.H. de Jong, T. Borovski, J.B. Tuynman, M. Todaro, C. Merz, H. Rodermond, M.R. Sprick, K. Kemper, D.J. Richel, G. Stassi, J.P. Medema, Nature 12, 468 (2010).

    Google Scholar 

  14. 14.

    L. Ritsma, E.J.A. Steller, E. Beerling, C.J.M. Loomans, A. Zomer, C. Gerlach, N. Vrisekoop, D. Seinstra, L. van Gurp, R. Schäfer, D.A. Raats, A. de Graaff, T.N. Schumacher, E.J.P. de Koning, I.H. Borel Rinkes, O. Kranenburg, J. van Rheenen, Sci. Transl. Med. 4, 158ra145 (2012).

    Article  Google Scholar 

  15. 15.

    B. Gligorijevic, A. Bergman, J. Condeelis, Plos Biology 12, e1001995 (2014).

    Article  Google Scholar 

  16. 16.

    J. Grahovac, A. Wells, Lab Invest. 94, 31 (2014).

    Article  Google Scholar 

  17. 17.

    D.F. Quail, J.A. Joyce, Nat. Med. 19, 1423 (2013).

    Article  Google Scholar 

  18. 18.

    M. Chittezhath, M.K. Dhillon, J.Y. Lim, D. Laoui, I.N. Shalova, Y.L. Teo, J. Chen, R. Kamaraj, L. Raman, J. Lum, T.P. Thamboo, E. Chiong, F. Zolezzi, H. Yang, J.A. Van Ginderachter, M. Poidinger, A.S.C. Wong, S.K. Biswas, Immunity 41, 815 (2014).

    Article  Google Scholar 

  19. 19.

    H. Peinado, M. Aleckovic, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno, M. Hergueta-Redondo, C. Williams, G. Garcia-Santos, C. Ghajar, A. Nitadori-Hoshino, C. Hoffman, K. Badal, B.A. Garcia, M.K. Callahan, J. Yuan, V.R. Martins, J. Skog, R.N. Kaplan, M.S. Brady, J.D. Wolchok, P.B. Chapman, Y. Kang, J. Bromberg, D. Lyden, Nat. Med. 18, 883 (2012).

    Article  Google Scholar 

  20. 20.

    T. Oskarsson, S. Acharyya, Xiang H.-F. Zhang, S. Vanharanta, S.F. Tavazoie, P.G. Morris, R.J. Downey, K. Manova-Todorova, E. Brogi, J. Massague, Nat. Med. 17, 867 (2011).

    Article  Google Scholar 

  21. 21.

    K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Am. J. Pathol. 153, 865 (1988).

    Article  Google Scholar 

  22. 22.

    A. Pocheville, in Handbook of Evolutionary Thinking in the Sciences, edited by T. Heams (Springer Science+Business Media, Dordrecht, 2015) chapt. 26.

  23. 23.

    K.R. Yang, S.M. Mooney, J.C. Zarif, D.S. Coffey, R.S. Tachman, K.J. Pienta, J. Cell. Biochem. 115, 1478 (2014).

    Article  Google Scholar 

  24. 24.

    B. Diaz, A. Yuen, S. Iizuka, S. Higashiyama, S.A. Courtneidge, J. Cell Biol. 201, 279 (2013).

    Article  Google Scholar 

  25. 25.

    N. Erez, L.M. Coussens, Int. J. Cancer 128, 2536 (2011).

    Article  Google Scholar 

  26. 26.

    A.J. Lymbery, Trends Parasitol. 31, 134 (2015).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bojana Gligorijevic.

Additional information

Contribution to the Focus Point on “The Physics of Cancer” edited by M. Ben Amar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergman, A., Gligorijevic, B. Niche construction game cancer cells play. Eur. Phys. J. Plus 130, 203 (2015). https://doi.org/10.1140/epjp/i2015-15203-5

Download citation

Keywords

  • Cancer Stem Cell
  • Niche Construction
  • Secondary Site
  • Secondary Organ
  • Niche Construction Theory