Skip to main content

Advertisement

Log in

Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems’ future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function (F . Furthermore, the second strategy is suggested to maximize the thermal efficiency (η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function (F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chambadal, Les Centrales Nuclearies (Armand Colin, Paris, 1957) pp. 41--58.

  2. I.I. Novikov, At. Energ. 3, 409 (1957) (English translation J. Nucl. Energy II 7.

    Google Scholar 

  3. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975).

    Article  ADS  Google Scholar 

  4. A. Bejan, J. Appl. Phys. 79, 1191 (1996).

    Article  ADS  Google Scholar 

  5. L. Chen, C. Wu, F. Sun, J. Non-Equilibr. Thermodyn. 24, 327 (1999).

    ADS  MATH  Google Scholar 

  6. A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Prog. Energy Combust. Sci. 30, 175 (2004).

    Article  Google Scholar 

  7. Mohammad H. Ahmadi, Hoseyn Sayyaadi, Hadi Hosseinzadeh, Heat Transfer - Asian Res. 44, 347 (2015).

    Article  Google Scholar 

  8. B. Sahin, A. Kodal, Energy Convers. Manag. 42, 1085 (2001).

    Article  Google Scholar 

  9. A. Kodal, B. Sahin, Int. J. Therm. Sci. 42, 777 (2003).

    Article  Google Scholar 

  10. M.A. Barranco-Jiménez, F. Angulo-Brown, J. Energy Inst. 80, 96 (2007).

    Article  Google Scholar 

  11. B. Sahin, Y. Ust, T. Yilmaz, I.H. Akcay, Renew. Energy 31, 1033 (2006).

    Article  Google Scholar 

  12. A. DeVos, Energy Convers. Manag. 36, 1 (1995).

    Article  Google Scholar 

  13. L. Yaqi et al., Renew. Energy 36, 421 (2011).

    Article  Google Scholar 

  14. I. Tlili, Renew. Sustain Energy Rev. 16, 2234 (2012).

    Article  Google Scholar 

  15. S.C. Kaushik, S. Kumar, Energy Convers. Manag. 42, 295 (2001).

    Article  Google Scholar 

  16. S.C. Kaushik, S. Kumar, Energy 25, 989 (2000).

    Article  Google Scholar 

  17. A. Sharma, S.K. Shukla, A.K. Rai, Thermal Sci. 15, 995 (2011).

    Article  Google Scholar 

  18. D.A. Blank, G.W. Davis, C. Wu, Energy 19, 125 (1994).

    Article  Google Scholar 

  19. Altuğ Sişman, Hasan Saygin, Appl. Energy 68, 367 (2001).

    Article  Google Scholar 

  20. Hasan Saygin, Altuğ Sişman, J. Appl. Phys. 90, 3086 (2001).

    Article  Google Scholar 

  21. Hasan Saygin, Altuğ Sişman, Appl. Energy 69, 77 (2001).

    Article  Google Scholar 

  22. Jizhou He, Jincan Chen, Ben Hua, Appl. Energy 72, 541 (2002).

    Article  Google Scholar 

  23. Bihong Lin, Yue Zhang, Jincan Chen, Appl. Energy 83, 513 (2006).

    Article  Google Scholar 

  24. A. Sişman, H. Saygin, Phys. Scr. 63, 263 (2001).

    Article  ADS  Google Scholar 

  25. Eitan Geva, Ronnie Kosloff, J. Chem. Phys. 96, 3054 (1992).

    Article  ADS  Google Scholar 

  26. E. Geva, R. Kosloff, Phys. Rev. E 49, 3903 (1994).

    Article  ADS  Google Scholar 

  27. T. Feldmann, E. Geva, R. Kosloff, P. Salamon, Am. J. Phys. 64, 485 (1996).

    Article  ADS  Google Scholar 

  28. F. Wu, L. Chen, F. Sun, C. Wu, P. Hua, Energy Convers. Manag. 39, 1161 (1998).

    Article  Google Scholar 

  29. Feng Wu et al., Int. J. Engin. Sci. 38, 239 (2000).

    Article  Google Scholar 

  30. J. He, J. Chen, B. Hua, Phys. Rev. E 65, 036145 (2002).

    Article  ADS  Google Scholar 

  31. M. Reith, Nano-Engineering in Science and Technology (World Scientific, New Jersey, 2003).

  32. James L. Wilbur, George M. Whitesides, in Nanotechnology (Springer, New York, 1999) pp. 331-369.

  33. J.M. Saleh, Fluid Flow Handbook (McGraw-Hill, New York, 2002).

  34. A. Sisman, I. Muller, Phys. Lett. A 320, 360 (2004).

    Article  ADS  Google Scholar 

  35. A. Sisman, J. Phys. A: Math. Gen. 37, 11353 (2004).

    Article  ADS  MATH  Google Scholar 

  36. A. Sisman, Z.F. Ozturk, C. Firat, Phys. Lett. A 362, 16 (2007).

    Article  ADS  Google Scholar 

  37. H. Pang, W.S. Dai, M. Xie, J. Phys. A: Math. Gen. 39, 2563 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. R.M. Ziff, G.E. Uhlenbeck, M. Kac, Phys. Rep. 32, 169 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  39. W.S. Dai, M. Xie, Phys. Lett. A 311, 340 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. W. Nie, J. He, Phys. Lett. A 372, 1168 (2008).

    Article  ADS  MATH  Google Scholar 

  41. W. Nie, J. He, X. He, J. Appl. Phys. 103, 114909 (2008).

    Article  ADS  Google Scholar 

  42. Emin Açikkalp, Necmettin Caner, Eur. Phys. J. Plus 130, 93 (2015).

    Article  Google Scholar 

  43. Emin Açikkalp, Necmettin Caner, Eur. Phys. J. Plus 130, 73 (2015).

    Article  Google Scholar 

  44. Emin Açikkalp, Necmettin Caner, Phys. Lett. A 379, 1990 (2015).

    Article  MathSciNet  Google Scholar 

  45. T. Özyer, M. Zhang, R. Alhajj, Appl. Intell. 35, 110 (2011).

    Article  Google Scholar 

  46. O. Beatrice, J.R. Brian, H. Franklin, Appl. Intell. 24, 17 (2006).

    Article  Google Scholar 

  47. I. Blecic, A. Cecchini, G. Trunfio, Appl. Intell. 26, 125 (2007).

    Article  Google Scholar 

  48. D.A.V. Veldhuizen, G.B. Lamont, Evol. Comput. 8, 125 (2000).

    Article  Google Scholar 

  49. A. Konak, D.W. Coit, A.E. Smith, Reliability Engin. Amp. System Safety 91, 992 (2006).

    Article  Google Scholar 

  50. M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Renew. Energy 60, 313 (2013).

    Article  Google Scholar 

  51. M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, Marco A. Barranco-Jimenez, Energy Convers. Manag. 73, 370 (2013).

    Article  Google Scholar 

  52. M.H. Ahmadi, H. Sayyaadi, S. Dehghani, H. Hosseinzade, Energy Convers. Manag. 75, 282 (2013).

    Article  Google Scholar 

  53. M.H. Ahmadi, S. Dehghani, A.H. Mohammadi, M. Feidt, Marco A. Barranco-Jimenez, Energy Convers. Manag. 75, 635 (2013).

    Article  Google Scholar 

  54. M.H. Ahmadi, M.A. Ahmadi, R. Bayat, M. Ashouri, M. Feidt, Energy Convers. Manag. 91, 315 (2015).

    Article  Google Scholar 

  55. A. Lazzaretto, A. Toffolo, Energy 29, 1139 (2004).

    Article  Google Scholar 

  56. S. Toghyani, A. Kasaeian, M.H. Ahmadi, Energy Convers. Manag. 80, 54 (2014).

    Article  Google Scholar 

  57. A. Toffolo, A. Lazzaretto, Energy 27, 549 (2002).

    Article  Google Scholar 

  58. M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Energy Convers. Manag. 76, 561 (2013).

    Article  Google Scholar 

  59. Mohammad H. Ahmadi, Mohammad Ali Ahmadi, Amir H. Mohammadi, Michel Feidt, Seyed Mohsen Pourkiaei, Energy Convers. Manag. 82, 351 (2014).

    Article  Google Scholar 

  60. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Energy Convers. Manag. 80, 319 (2014).

    Article  Google Scholar 

  61. M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Marco A. Barranco-Jimenez, Energy Convers. Manag. 75, 438 (2013).

    Article  Google Scholar 

  62. M.H. Ahmadi, A.H. Mohammadi, S.M. Pourkiaei, Int. J. Ambient Energy (2014) DOI:10.1080/01430750.2014.907211.

  63. Hoseyn Sayyaadi, Mohammad Hossein Ahmadi, Saeed Dehghani, J. Energy Eng. 141, 04014012 (2014) DOI:10.1061/(ASCE)EY.1943-7897.0000191.

    Article  Google Scholar 

  64. H. Sahraie, M.R. Mirani, M.H. Ahmadi, M. Ashouri, Energy Convers. Manag. 99, 81 (2015).

    Article  Google Scholar 

  65. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, H. Hosseinzade, M. Feidt, Energy Convers. Manag. 88, 1051 (2014).

    Article  Google Scholar 

  66. M.H. Ahmadi, M.A. Ahmadi, Energy Convers. Manag. 89, 147 (2015).

    Article  Google Scholar 

  67. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Sameti, Energy Convers. Manag. 90, 175 (2015).

    Article  Google Scholar 

  68. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Oil Gas Sci. Technol. -- Rev. IFP Energies nouvelles http://dx.doi.org/10.2516/ogst/2014028 (2014).

  69. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Mech. Industry 16, 207 (2015).

    Article  Google Scholar 

  70. S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Energy Convers. Manag. 94, 124 (2015).

    Article  Google Scholar 

  71. Seyed Abbas Sadatsakkak et al., Energy Convers. Manag. 93, 31 (2015).

    Article  Google Scholar 

  72. Mohammad H. Ahmadi, Mohammad Ali Ahmadi, Seyed Abbas Sadatsakkak, Renew. Sustai. Energy Rev. 51, 1055 (2015).

    Article  Google Scholar 

  73. Wenjie Nie, Jizhou He, Jianqiang Du, Physica A 388, 318 (2009).

    Article  Google Scholar 

  74. Emin Açikkalp, Physica A 436, 311 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M.H., Ahmadi, MA. & Pourfayaz, F. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. Eur. Phys. J. Plus 130, 190 (2015). https://doi.org/10.1140/epjp/i2015-15190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15190-5

Keywords

Navigation