Skip to main content
Log in

Possible explanation for the surface brightness profile of the stellar disk

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The exponential surface brightness profile (SBP) of a disk galaxy still has not been completely explained. In this study, we will explore this issue from the point of view of statistical mechanics. A simplified model is adopted here, which generalizes our previous work focusing on 3-dimensional spherical systems to study the disk’s radial and vertical distribution and reproduces the sech 2/N law of the vertical structure. For the radial structure we assume that the velocity dispersion is isotropic in the radial and tangential directions. In our method, the energy constraint vanishes, and the solution is only valid for some SBPs with truncation and large scale lengths relative to radius. When constraining the total angular momentum, the energy of the stellar disk and most of the radial SBPs of typical disks can be well described. Thus, the radial distribution of the stellar disk may be determined by both the random and orbital motions of stars. However, our model does not explain well those radial SBPs with an inner dip or those with a three-exponential law profile, for which we should further consider the validity of all our assumptions. In our fittings, the central gravitational force is set to be nonzero to include the effect of nonzero gravity at the center of the stellar disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Patterson, Harvard Coll. Obs. Bull. 914, 9 (1940).

    ADS  Google Scholar 

  2. G. de Vaucouleurs, Astrophys. J. 128, 465 (1958).

    Article  ADS  Google Scholar 

  3. L. Mestel, Mon. Not. R. Astron. Soc. 126, 553 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. K.C. Freeman, Astrophys. J. 160, 811 (1970).

    Article  ADS  Google Scholar 

  5. S.M. Fall, G. Efstathiou, Mon. Not. R. Astron. Soc. 193, 189 (1980).

    Article  ADS  Google Scholar 

  6. H.J. Mo, F. van den Bosch, S.D.M. White, Galaxy Formation and Evolution (Cambridge University Press, New York, 2010).

  7. D.N.C. Lin, J.E. Pringle, Astrophys. J. 320, L87 (1987).

    Article  ADS  Google Scholar 

  8. P.C. van der Kruit, Astron. Astrophys. Suppl. Ser. 38, 15 (1979).

    ADS  Google Scholar 

  9. P. Erwin, J.E. Beckman, M. Pohlen, Astrophys. J. 626, L81 (2005).

    Article  ADS  Google Scholar 

  10. J. Bakos, I. Trujillo, Astrophys. J. 683, 103 (2008).

    Article  ADS  Google Scholar 

  11. M. Pohlen, I. Trujillo, Astron. Astrophys. 454, 759 (2006).

    Article  ADS  Google Scholar 

  12. R.B. Larson, Mon. Not. R. Astron. Soc. 176, 31 (1976).

    Article  ADS  Google Scholar 

  13. P.C. van der Kruit, K.C. Freeman, Annu. Rev. Astron. Astrophys. 49, 301 (2011).

    Article  ADS  Google Scholar 

  14. D. Montgomery, Y.C. Lee, Mon. Not. R. Astron. Soc. 368, 380 (1991).

    MathSciNet  ADS  Google Scholar 

  15. J.J. Aly, J. Perez, Phys. Rev. E 60, 5185 (1999).

    Article  ADS  Google Scholar 

  16. T.N. Teles, Y. Levin, R. Pakter, F.B. Rizzato, J. Stat. Mech. 5, 7 (2010) arXiv:1004.0247.

    Google Scholar 

  17. P.H. Chavanis, arXiv:cond-mat/0212223.

  18. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).

    Article  ADS  Google Scholar 

  19. S. Tremaine, M. Henon, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 219, 285 (1986).

    Article  ADS  MATH  Google Scholar 

  20. S.D.M. White, R. Narayan, Mon. Not. R. Astron. Soc. 229, 103 (1987).

    Article  ADS  Google Scholar 

  21. P.H. Chavanis, Astron. Astrophys. 381, 340 (2002).

    Article  ADS  MATH  Google Scholar 

  22. J. Binney, S. Tremaine, Galactic Dynamics, 2nd edition (Princeton University Press, Princeton, New Jersey, 2008).

  23. J. Hjorth, L.L.R. Williams, Astrophys. J. 722, 851 (2010).

    Article  ADS  Google Scholar 

  24. A. Pontzen, F. Governato, Mon. Not. R. Astron. Soc. 430, 121 (2013).

    Article  ADS  Google Scholar 

  25. D.B. Kang, P. He, Astron. Astrophys. 526, A147 (2011).

    Article  ADS  Google Scholar 

  26. P. He, D.B. Kang, Mon. Not. R. Astron. Soc. 406, 2678 (2010).

    Article  ADS  Google Scholar 

  27. D.B. Kang, EPL 98, 30011 (2012).

    Article  ADS  Google Scholar 

  28. S.S. McGaugh, Galaxies 2, 601 (2014).

    Article  ADS  Google Scholar 

  29. R. Dave, K. Finlator, B.D. Oppenheimer, Mon. Not. R. Astron. Soc. 421, 98 (2012).

    ADS  Google Scholar 

  30. D.N.C. Lin, J.E. Pringle, Astrophys. J. 320, L87 (1987).

    Article  ADS  Google Scholar 

  31. P. Goldreich, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 125 (1965).

    Article  ADS  Google Scholar 

  32. B. Barbanis, L. Woltjer, Astrophys. J. 150, 461 (1967).

    Article  ADS  Google Scholar 

  33. J.J. Aly, Phys. Rev. E 49, 3771 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  34. D.B. Kang, Astrophys. Space Sci. 349, 717 (2014).

    Article  ADS  Google Scholar 

  35. T.S. van Albada, Mon. Not. R. Astron. Soc. 201, 939 (1982).

    Article  ADS  Google Scholar 

  36. J. Hjorth, J. Madsen, Mon. Not. R. Astron. Soc. 265, 237 (1993).

    Article  ADS  Google Scholar 

  37. L.J. Spitzer, Astrophys. J. 95, 329 (1942).

    Article  ADS  MATH  Google Scholar 

  38. D. Burstein, Astrophys. J. 234, 829 (1979).

    Article  ADS  Google Scholar 

  39. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  40. L.P. Osipkov, Astrophysics 42, 451 (1999).

    Article  ADS  Google Scholar 

  41. P. Erwin, M. Pohlen, J.E. Beckman, Astron. J. 135, 20 (2008).

    Article  ADS  Google Scholar 

  42. L. Gutirrez, P. Erwin, R. Aladro, J.E. Beckman, Astron. J. 142, 145 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Biao Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, DB., Cui, L. Possible explanation for the surface brightness profile of the stellar disk. Eur. Phys. J. Plus 130, 189 (2015). https://doi.org/10.1140/epjp/i2015-15189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15189-x

Keywords

Navigation