Skip to main content
Log in

Fission and spallation data evaluation using induced-activity method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from 238U, 232Th and 181Ta photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from 241Am, 238U and 237Np fission induced by 660 MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. A multimodal fission option has been added to this code, which allows to account the contribution of symmetric and asymmetric (superasymmetric) fission to the total fission yield. Moreover, this work contains the general results obtained in the analysis of the isomer ratios of fission fragments from 238U and 232Th targets at the bremsstrahlung end-point energies of 50 and 3500 MeV. Moreover, the values of the average angular momenta of primary fragments are estimated by using the statistical model calculation. We subsequently discuss the complex particle-induced reaction, such as heavy ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fragmentation) in intermediate- and high-energy ranges of the incident particle. The set of experimental data, presented in this work, encompasses not merely the data as total production cross sections. Notwithstanding, it further covers other data, as individual yields/cross sections, charge, mass and spin distributions of the reaction fragments, as well as kinematic features. These sources of experimental data can serve as a consistent set of benchmarking data, still necessary for the study of heavy nuclei. Besides, it is also useful for technological applications, from astrophysics and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gonnenwein, The Nuclear Fission Process, edited by C. Wagemans (CRC Press, Boca Raton, USA, 1991) pp. 287--473.

  2. A. Turkevich, J.B. Niday, Phys. Rev. 84, 52 (1951).

    Article  ADS  Google Scholar 

  3. V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971).

    Article  ADS  Google Scholar 

  4. U. Brosa et al., Phys. Rep. 197, 167 (1990).

    Article  ADS  Google Scholar 

  5. R. Serber, Phys. Rev. 72, 1114 (1947).

    Article  ADS  Google Scholar 

  6. M.C. Duijvestijn, A.J. Koning et al., Phys. Rev. C 59, 776 (1999).

    Article  ADS  Google Scholar 

  7. V.M. Maslov, Nucl. Phys. A 717, 3 (2003).

    Article  ADS  Google Scholar 

  8. Yu.E. Titarenko et al., Nucl. Instrum. Methods A 414, 73 (1999).

    Article  ADS  Google Scholar 

  9. T. Enqvist, P. Armbruster, J. Benlliure et al., Nucl. Phys. A 703, 435 (2002).

    Article  ADS  Google Scholar 

  10. S. Stoulos, W. Westmeier, R. Hashemi-Nezhad et al., Phys. Rev. C 85, 024612 (2012).

    Article  ADS  Google Scholar 

  11. F. Rejmund, B. Mustapha, P. Armbruster et al., Nucl. Phys. A 683, 540 (2001).

    Article  ADS  Google Scholar 

  12. R. Michel, R. Bodemann, H. Busemann et al., Nucl. Instrum. Methods B 129, 153 (1997).

    Article  ADS  Google Scholar 

  13. K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).

    Article  ADS  Google Scholar 

  14. R.B. Firestone, in Tables of Isotopes, 8th edition, edited by S.Y. Frank Chu, C.M. Baglin (Wiley Interscience, New York, 1996) 1998 Update (with CD ROM).

  15. R. Michel, D. Hansmann, S. Neumann et al., Nucl. Instrum. Methods B 343, 30 (2015).

    Article  ADS  Google Scholar 

  16. H. Baba, J. Sanada, H. Araki et al., Nucl. Instrum. Methods A 416, 301 (1998).

    Article  ADS  Google Scholar 

  17. G.S. Karapetyan, Sci. Lett. YSU 211, 31 (2006).

    Google Scholar 

  18. W. Younes, J.A. Becker, L.A. Bernstein et al., AIP Conf. Proc. 610, 673 (2001).

    Article  ADS  Google Scholar 

  19. N.A. Demekhina, G.S. Karapetyan, Phys. At. Nucl. 71, 27 (2008).

    Article  Google Scholar 

  20. N.A. Demekhina, G.S. Karapetyan, Phys. At. Nucl. 73, 24 (2010).

    Article  Google Scholar 

  21. A. Deppman, G.S. Karapetyan, V. Guimaraes et al., Phys. Rev. C 91, 024620 (2015).

    Article  ADS  Google Scholar 

  22. H. Kudo, M. Maruyama, M. Tanikawa et al., Phys. Rev. C 57, 178 (1998).

    Article  ADS  Google Scholar 

  23. M. Strecker, R. Wien, P. Plischke, W. Scobel, Phys. Rev. C 41, 2172 (1990).

    Article  ADS  Google Scholar 

  24. Yu. Gangrsky, B. Markov, B. Perelygin, Registration and Spectrometry of Fission Fragments (Moscow, 1992) Energoatomizdat.

  25. C. Chung, J. Hogan, Phys. Rev. C 24, 180 (1981).

    Article  ADS  Google Scholar 

  26. C. Chung, J. Hogan, Phys. Rev. C 25, 899 (1982).

    Article  ADS  Google Scholar 

  27. G.S. Karapetyan, A.R. Balabekyan, N.A. Demekhina et al., Phys. At. Nucl. 72, 911 (2009).

    Article  Google Scholar 

  28. A.R. Balabekyan, G.S. Karapetyan, N.A. Demekhina et al., Phys. At. Nucl. 71, 1 (2010).

    Google Scholar 

  29. V.S. Barashenkov, F.G. Gereghi, A.S. Iljinov et al., Nucl. Phys. A 231, 462 (1974).

    Article  ADS  Google Scholar 

  30. T. Fukahori, O. Iwamoto, S. Chiba, in Proceedings of the Seventh International Conference on Nuclear Criticality Safety, ICNC2003, JAERI-conf, 2003-019 (pts. 1-2), edited by Nihon Genshiryoku Kenkyuujo, Nihon Genshiryoku Gakkai (Japan Atomic Energy Research Institute, Tokai-mura, Japan, 2003) p. 144.

  31. E. Jacobs et al., Phys. Rev. C 19, 422 (1979).

    Article  ADS  Google Scholar 

  32. A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan, N.A. Demekhina, Phys. Rev. C 87, 054604 (2013).

    Article  ADS  Google Scholar 

  33. A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan et al., Phys. Rev. C 88, 024608 (2013).

    Article  ADS  Google Scholar 

  34. A. Deppman, E. Andrade-II, V. Guimaraes, G.S. Karapetyan et al., Phys. Rev. C 88, 064609 (2013).

    Article  ADS  Google Scholar 

  35. A. Deppman, S.B. Duarte, G. Silva et al., J. Phys. G: Nucl. Part. Phys. 30, 1991 (2004).

    Article  ADS  Google Scholar 

  36. A. Deppman et al., Phys. Rev. Lett. 87, 182701 (2001).

    Article  ADS  Google Scholar 

  37. A. Deppman et al., Nucl. Instrum. Methods Phys. Res. B 211, 15 (2003).

    Article  ADS  Google Scholar 

  38. A. Deppman et al., Comp. Phys. Comm. 145, 385 (2002).

    Article  ADS  MATH  Google Scholar 

  39. S. Anefalos Pereira, A. Deppman, G. Silva, J.R. Maiorino et al., Nucl. Sci. Eng. 159, 102 (2008).

    Google Scholar 

  40. S. Anefalos, A. Deppman, G. Silva et al., Braz. J. Phys. 35, 912 (2005).

    Article  ADS  Google Scholar 

  41. S. Anefalos, A. Deppman, J.D.T. Arruda-Neto et al., AIP Conf. Proc. 769, 1299 (2004).

    Article  ADS  Google Scholar 

  42. S.T. Mongelli, J.R. Maiorino, S. Anefalos et al., Braz. J. Phys. 35, 894 (2005).

    Article  ADS  Google Scholar 

  43. T. Kodama, S.B. Duarte, K.C. Chung, R.A.M.S. Nazareth, Phys. Rev. Lett. 49, 536 (1982).

    Article  ADS  Google Scholar 

  44. M. Goncalves, S. de Pina, D.A. Lima et al., Phys. Lett. B 406, 1 (1997).

    Article  ADS  Google Scholar 

  45. B.D. Serot, J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negele, E. Vogt, Vol. 16 (Plenum Press, New York, USA, 1986) p. 1.

  46. I. Dostrovsky, P. Rabinowitz, R. Bivins, Phys. Rev. 111, 1659 (1958).

    Article  ADS  Google Scholar 

  47. M.V. Ricciardi, P. Armbruster, J. Benlliure et al., Phys. Rev. C 73, 014607 (2006).

    Article  ADS  Google Scholar 

  48. W. Loveland et al., Phys. Rev. C 24, 464 (1981).

    Article  ADS  Google Scholar 

  49. Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).

    Article  ADS  Google Scholar 

  50. A.A. Kotov, L.N. Andronenko, M.N. Andronenko et al., Nucl. Phys. A 583, 575 (1995).

    Article  ADS  Google Scholar 

  51. V.A. Rubchenya, Phys. Rev. C 75, 054601 (2007).

    Article  ADS  Google Scholar 

  52. I.N. Vishnevskii et al., Izv. Akad. Nauk, Se. Fiz. 69, 658 (2005).

    Google Scholar 

  53. M. Tanikawa, H. Kudo, H. Sunaoshi et al., Z. Phys. A 347, 53 (1993).

    Article  ADS  Google Scholar 

  54. R. Vanska, R. Rieppo, Nucl. Instrum. Methods 179, 525 (1981).

    Article  ADS  Google Scholar 

  55. D. Kolev, E. Dobreva, N. Nenov, V. Todorov, Nucl. Instrum. Methods 356, 390 (1995).

    Article  ADS  Google Scholar 

  56. J.R. Huizenga, R. Vandenbosch, Phys. Rev. 120, 1305 (1960).

    Article  ADS  Google Scholar 

  57. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952.

  58. H.K. Vonach, R. Vandenbosch, J.R. Huizenga, Nucl. Phys. 60, 70 (1964).

    Article  Google Scholar 

  59. D.C. Aumann et al., Phys. Rev. C 16, 254 (1977).

    Article  ADS  Google Scholar 

  60. N.A. Demekhina, G.S. Karapetyan, J. Contemp. Phys. 42, 215 (2007).

    Article  Google Scholar 

  61. D. De Frenne, B. Proot, H. Thierens et al., Phys. Rev. C 29, 1777 (1984).

    Article  ADS  Google Scholar 

  62. G.B. Saha, I. Tomita, L. Yaffe, J. Inorg. Nucl. Chem. 31, 3731 (1969).

    Article  Google Scholar 

  63. C.L. Rao, G.B. Saha, L. Yaffe, J. Inorg. Nucl. Chem. 34, 2397 (1972).

    Article  Google Scholar 

  64. C. Rudy, R. Vandenbosch, C.T. Ratcliffe, J. Inorg. Nucl. Chem. 30, 365 (1967).

    Article  Google Scholar 

  65. B.L. Zhuikov, M.V. Mebel, V.M. Kokhanyuk, A.S. Iljinov, Phys. Rev. C 68, 054611 (2003).

    Article  ADS  Google Scholar 

  66. I.N. Vishnevskii et al., Yad. Fiz. 61, 1562 (1998).

    Google Scholar 

  67. N. Patronis, C.T. Papadopoulos, S. Galanopoulos et al., Phys. Rev. C 75, 034607 (2007).

    Article  ADS  Google Scholar 

  68. H. Warhanek, R. Vandenbosch, J. Inorg. Nucl. Chem. 30, 669 (1964).

    Article  Google Scholar 

  69. A.S. Iljinov, M.V. Mebel, C. Guaraldo et al., Phys. Rev. C 39, 1420 (1989).

    Article  ADS  Google Scholar 

  70. S. Cohen, F. Plasil, W.J. Swiatecki, Ann. Phys. (N.Y.) 82, 557 (1974).

    Article  ADS  Google Scholar 

  71. A.J. Sierk et al., Phys. Rev. C 33, 2039 (1986).

    Article  ADS  Google Scholar 

  72. J. Wilczynski, Nucl. Phys. A 216, 386 (1973).

    Article  ADS  Google Scholar 

  73. O.A. Capurro, D.E. DiGregorio, S. Gil et al., Phys. Rev. C 55, 766 (1997).

    Article  ADS  Google Scholar 

  74. M.G. Mustafa, K. Kumar, Phys. Rev. C 12, 1638 (1975).

    Article  ADS  Google Scholar 

  75. J.M. Alexander, Nuclear Chemistry, edited by L. Yaffe, Vol. I (Academic, New York, 1968) p. 273.

  76. L. Winsberg, Phys. Rev. C 22, 2116 (1980) and 22.

    Article  ADS  Google Scholar 

  77. L.C. Northcliffe, R.E. Schilling, Nucl. Data, Sect. A 7, 233 (1970).

    Article  ADS  Google Scholar 

  78. M. Lagarde-Simonoff, G.N. Simonoff, Phys. Rev. C 20, 1498 (1979).

    Article  ADS  Google Scholar 

  79. N.A. Demekhina, G.S. Karapetyan, V. Guimaraes, Eur. Phys. J. Plus 128, 28 (2013).

    Article  Google Scholar 

  80. N.A. Demekhina, G.S. Karapetyan, S.M. Lukyanov, Yu. Penionjkevich, Phys. At. Nucl. 68, 23 (2005).

    Article  Google Scholar 

  81. A.V. Prokofiev, Nucl. Instrum. Methods A 463, 557 (2001).

    Article  ADS  Google Scholar 

  82. M. Blann, F. Plasil, Phys. Rev. Lett. 29, 303 (1972).

    Article  ADS  Google Scholar 

  83. A.R. Balabekyan, N.A. Demekhina, G.S. Karapetyan et al., Phys. Rev. C 90, 054612 (2014).

    Article  ADS  Google Scholar 

  84. A.R. Balabekyan, N.A. Demekhina, G.S. Karapetyan et al., Phys. Rev. C 89, 054604 (2014).

    Article  ADS  Google Scholar 

  85. J. Benlliure et al., Nucl. Phys. A 683, 513 (2001).

    Article  ADS  Google Scholar 

  86. J. Benlliure et al., Nucl. Phys. A 700, 469 (2002).

    Article  ADS  Google Scholar 

  87. S.B. Kaufman, E.P. Steinberg, Phys. Rev. C 22, 167 (1980).

    Article  ADS  Google Scholar 

  88. P. Bonche et al., Nucl. Phys. A 436, 265 (1985).

    Article  ADS  Google Scholar 

  89. E. Bonnet et al., Phys. Rev. Lett. 103, 072701 (2009).

    Article  ADS  Google Scholar 

  90. P. Napolitani, K.-H. Schmidt, L. Tassan-Got, J. Phys. G.: Nucl. Part. Phys. 38, 115006 (2011).

    Article  ADS  Google Scholar 

  91. H.H. Heckman, D.E. Greiner, P.J. Lindstrom, H. Shwe, Phys. Rev. C 17, 1735 (1978).

    Article  ADS  Google Scholar 

  92. D.J. Morrissey, W. Loveland, M. de Saint Simon, G.T. Seaborg, Phys. Rev. C 21, 1783 (1980).

    Article  ADS  Google Scholar 

  93. S.B. Kaufman, E.P. Steinberg, M.W. Weisfield, Phys. Rev. C 18, 1349 (1978).

    Article  ADS  Google Scholar 

  94. O. Scheidemann, N. Porile, Phys. Rev. C 14, 1534 (1976).

    Article  ADS  Google Scholar 

  95. P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).

    Article  ADS  Google Scholar 

  96. M.G. Itkis et al., Z. Phys. A 320, 433 (1985).

    Article  ADS  Google Scholar 

  97. J.J. Kolata, V. Guimaraes, D. Peterson et al., Phys. Rev. Lett. 81, 4580 (1998).

    Article  ADS  Google Scholar 

  98. L.C. Chamon, M.S. Hussein, L.F. Canto, Braz. J. Phys. 37, 1177 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Karapetyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyan, G.S. Fission and spallation data evaluation using induced-activity method. Eur. Phys. J. Plus 130, 180 (2015). https://doi.org/10.1140/epjp/i2015-15180-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15180-7

Keywords

Navigation