Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Acoustic investigation of the aperture dynamics of an elastic membrane closing an overpressurized cylindrical cavity

  • 46 Accesses

Abstract

We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D.E. Speil, J. Geophys. Res. 97, 11443 (1992).

  2. 2.

    G.B. Deane, J. Acoust. Soc. Am. 133, 69 (2013).

  3. 3.

    D.T. Deihl, F.R. Carlson, Am. J. Phys. 36, 441 (1968).

  4. 4.

    J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, UK, 1978) p. 504.

  5. 5.

    M.R. James, S.J. Lane, B. Chouet, J.S. Gilbert, J. Volcanol. Geotherm. Res. 129, 61 (2004).

  6. 6.

    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vols. I and II (Wiley, New York, 1987).

  7. 7.

    R.P. Chhabra, Bubbles, Drops and Particles in non-Newtonian Fluids, 2nd edition, Chemical Industries (Taylor & Francis, London, 2007) Series No. 113.

  8. 8.

    T. Kobayashi, A. Namiki, I. Sumita, J. Geophys. Res. 115, B10201 (2010).

  9. 9.

    V. Vidal, J.-C. Géminard, T. Divoux, F. Melo, Eur. Phys. J. B 54, 321 (2006).

  10. 10.

    T. Divoux, V. Vidal, F. Melo, J.-C. Géminard, Phys. Rev. E 77, 056310 (2008).

  11. 11.

    V. Vidal, M. Ripepe, T. Divoux, D. Legrand, J.-C. Géminard, F. Melo, Geophys. Res. Lett. 37, L07302 (2010).

  12. 12.

    C. Sánchez, B. Álvarez, F. Melo, V. Vidal, Geophys. Res. Lett. 41, 6705 (2014).

  13. 13.

    A. Yokoo, M. Iguchi, J. Volcanol. Geotherm. Res. 196, 287 (2010).

  14. 14.

    J.B. Johnson, M. Ripepe, J. Volcanol. Geotherm. Res. 206, 61 (2011).

  15. 15.

    E. Blackburn, L. Wilson, R. Sparks, J. Geol. Soc. London 132, 429 (1976).

  16. 16.

    S. Vergniolle, G. Brandeis, J. Geophys. Res. 101, 20433 (1996).

  17. 17.

    M. Hagerty, S. Schwartz, M. Garcés, M. Protti, J. Volcanol. Geotherm. Res. 101, 27 (2000).

  18. 18.

    S. Vergniolle, M. Boichu, J. Caplan-Auerbach, J. Volcanol. Geotherm. Res. 137, 109 (2004).

  19. 19.

    H.M. Gonnermann, M. Manga, Annu. Rev. Fluid Mech. 39, 321 (2007).

  20. 20.

    J. Taddeucci, M.A. Alatorre-Ibargüengoitia, M. Moroni, L. Tornetta, A. Capponi, P. Scarlato, D.B. Dingwell, D. De Rita, Geophys. Res. Lett. 39, L16306 (2012).

  21. 21.

    L. Mullins, Rubber Chem. Technol. 42, 339 (1947).

  22. 22.

    J. Diani, B. Fayolle, P. Gilormini, Eur. Polym. J. 45, 601 (2009).

  23. 23.

    J. Niemczura, K. Ravi-Chandar, J. Mech. Phys. Solids 59, 457 (2011).

  24. 24.

    H. Levine, J. Schwinger, Phys. Rev. Lett. 73, 383 (1948).

  25. 25.

    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 3rd edition (J. Wiley & Sons, Inc., New York, 1982).

  26. 26.

    A. Pierce, Acoustics - An Introduction to Its Physical Principles and Applications (ASA, New York, 1989).

  27. 27.

    J. Kemp, Theoretical and experimental study of wave propagation in brass musical instruments PhD thesis, University of Edinburgh (2002).

  28. 28.

    R. Vermorel, N. Vandenberghe, E. Villermaux, Proc. R. Soc. A 463, 641 (2006).

  29. 29.

    P. Oswald, Rhéophysique, Ou comment coule la matière (Belin, Collection Echelles, 2005).

Download references

Author information

Correspondence to Valérie Vidal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez, C., Vidal, V. & Melo, F. Acoustic investigation of the aperture dynamics of an elastic membrane closing an overpressurized cylindrical cavity. Eur. Phys. J. Plus 130, 175 (2015). https://doi.org/10.1140/epjp/i2015-15175-4

Download citation

Keywords

  • Acoustic Emission
  • Acoustic Signal
  • Elastic Membrane
  • Rupture Time
  • Membrane Rupture