Skip to main content
Log in

Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. AL-Mudhaffer, M.A. Nattiq, M.A. Jaber, Arch. Appl. Sci. Res. 4, 173 (2012).

    Google Scholar 

  2. Yuan-Qing Li, Shao-Yun Fu, Yang Yang, Yiu-Wing Mai, Chem. Mater 20, 2637 (2008).

    Article  Google Scholar 

  3. Jun Xu, Jun Wang, Mike Mitchell, Prasun Mukherjee, Malika Jeffries-EL, Jacob W. Petrich, Zhiqun Lin, J. Am. Chem. Soc. 129, 12828 (2007).

    Article  Google Scholar 

  4. In-Yup Jeon, Jong-BeomBaek, Materials 3, 3654 (2010).

    Article  ADS  Google Scholar 

  5. A.M. Asiri, M.A. Hussein, B.M. Abu-Zied, A.E.A. Hermas, Composites B 51, 11 (2013).

    Article  Google Scholar 

  6. Y.S. Luo, J.P. Yang, X.J. Dai, Y. Yang, S.Y. Fu, J. Phys. Chem. C 113, 9406 (2009).

    Article  Google Scholar 

  7. V. Mittal, Polymer for energy storage and conversion (Scrivener Publishing, Beverly, 2013).

  8. V.D. Noto, M. Piga, E. Negro, G.A. Giffin, S. Polizzib, T.A. Zawodzinskic, RSC Adv. 3, 18960 (2013).

    Article  Google Scholar 

  9. V.D. Noto, T.A. Zawodzinski, A.M. Herring, G.A. Giffin, E. Negro, S. Lavina, Int. J. Hydrog. Energy 37, 6120 (2012).

    Article  Google Scholar 

  10. V.D. Noto, N. Boaretto, E. Negro, G.A. Giffin, S. Lavina, S. Polizzi, Int. J. Hydrog. Energy 37, 6199 (2012).

    Article  Google Scholar 

  11. Y. Yang, Y.Q. Li, S.Y. Fu, H.M. Xiao, J. Phys. Chem. C 112, 10553 (2008).

    Article  Google Scholar 

  12. A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 185, 1 (2012).

    Article  Google Scholar 

  13. H.C. Huang, T.E. Hsieh, Ceram. Int. 36, 1245 (2010).

    Article  Google Scholar 

  14. Y.Q. Li, S.Y. Fu, Y.W. Mai, Polymer 47, 2127 (2006).

    Article  Google Scholar 

  15. Y.Q. Li, Y. Yang, S.Y. Fu, Comp. Sci. Technol. 67, 3465 (2007).

    Article  Google Scholar 

  16. K.F. Konan, B. Hartiti, B. Aka, A. Ridah, K. Dakhsi, Y. Arba, P. Thevenin, Afrique Sci. 6, 29 (2010).

    Google Scholar 

  17. D.L. Pavia, G.M. Lampman, G.S. Kriz, Jr, Introduction to spectroscopy (Saunders College Publishing, Orlando 1979).

  18. A. Mostafaei, A. Zolriasatein, Prog. Nat. Sci. Mater. Int. 22, 273 (2012).

    Article  Google Scholar 

  19. A. Mostafaei, F. Nasirpouri, Prog. Org. Coat. 77, 146 (2014).

    Article  Google Scholar 

  20. H. Vašková, Vojtěch Křesálek, Raman spectroscopy of epoxy resin crosslinking in Recent Researches in Automatic Control (WSEAS Press) ISBN: 978-1-61804-004-6.

  21. G. Sorates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, 3rd edition (John Wiley & Sons Ltd, England, 2001).

  22. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Lightning Source, UK, Ltd, 2010).

  23. H. Vaškova, Vojtech. Křesalek, Int J. Math. Mod. Methods Appl. Sci. 5, 1197 (2011).

    Google Scholar 

  24. A. Umar, M.S. Akhtar, A. Al-Hajry, M.S. Al-Assiri, G.N. Dar, M.S. Islam, Chem. Eng. J. 262, 588 (2015).

    Article  Google Scholar 

  25. Y. Fu, Y. Huang, W. Meng, Z. Wang, Y. Bando, D. Golberg, Ch. Tang, C. Zhi, Nanotechnology 26, 115702 (2015).

    Article  ADS  Google Scholar 

  26. S. Zhou, Q. Xu, J. Xiao, W. Zhong, N. Yu, S.R. Kirk, T. Shu, D. Yin, Res. Chem. Intermed. DOI:10.1007/s11164-014-1859-3 (2015).

  27. B.M. Novak, Adv. Mater 5, 422 (1993).

    Article  Google Scholar 

  28. P.S. Cheng, K.M. Zeng, J.H. Chen, J. Chin. Chem. Soc. 61, 320 (2014).

    Article  Google Scholar 

  29. U. Alver, W. Zhou, A.B. Belay, R. Krueger, K.O. Davis, N.S. Hickman, Appl. Surf. Sci. 258, 3109 (2012).

    Article  ADS  Google Scholar 

  30. P. Tao, Yu. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, J. Mater. Chem. 21, 18623 (2011).

    Article  Google Scholar 

  31. A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Comp. Sci. Technol. 68, 768 (2008).

    Article  Google Scholar 

  32. Y.Q. Li, S.Y. Fu, Y. Yang, Y.W. Mai, Chem. Mater. 20, 2637 (2008).

    Article  Google Scholar 

  33. V. Khrenov, M. Klapper, M. Koch, K. Müllen, Macromol. Chem. Phys. 206, 95 (2005).

    Article  Google Scholar 

  34. H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, Chem. Eng. J. 229, 126 (2013).

    Article  Google Scholar 

  35. N.A. Ali, Iraqi J. Phys. 10, 1 (2011).

    Google Scholar 

  36. K. sharma, M. lal, A. kumar, N. goyal, J. Optoelect. Biom. Mater. 6, 19 (2014).

    Google Scholar 

  37. S.J. Kang, Y. HeeJoung, J. Mater. Sci: Mater. Electron. 24, 1863 (2013).

    Google Scholar 

  38. R.E. Dietz, J.J. Hopfield, D.G. Thomas, J. Appl. Phys. 32, 2282 (1961).

    Article  ADS  Google Scholar 

  39. Y. Kim, E. Kang, Y.S. Kwond, W.J. Cho, C. Chob, M. Changb, M. ReeC, T. Changc, C.S. Ha, Synth. Metals 85, 1399 (1997).

    Article  Google Scholar 

  40. S. Singha, M.J. Thomas, IEEE Trans. Dielect. Elect. Insul. 15, 12 (2008).

    Article  Google Scholar 

  41. A. Hafdallah, F. Ynineb, W. Daranfed, A. Nadhir, A.M. Salah, Nature Technol. 6, 25 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Namouchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, S., Namouchi, F. & Guermazi, H. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites. Eur. Phys. J. Plus 130, 152 (2015). https://doi.org/10.1140/epjp/i2015-15152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15152-y

Keywords

Navigation