Advertisement

Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping

  • Junyi Cao
  • Arkadiusz Syta
  • Grzegorz LitakEmail author
  • Shengxi Zhou
  • Daniel J. Inman
  • Yangquan Chen
Open Access
Regular Article

Abstract

We examine a vibrational energy harvester consisting of a mechanical resonator with a fractional damping and electrical circuit coupled by a piezoelectric converter. By comparing the bifurcation diagrams and the power output we show that the fractional order of damping changes the system response considerably and affects the power output. Various dynamic responses of the energy harvester are examined using phase trajectory, Fourier spectrum, Multi-scale entropy and 0–1 test. The numerical analysis shows that the fractionally damped energy harvesting system exhibits chaos, and periodic motion, as the fractional order changes. The observed bifurcations strongly influence the power output.

Keywords

Fractional Order Phase Portrait Bifurcation Diagram Fractional Derivative Fourier Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.A. Sodano, D.J. Inman, G. Park, Shock Vibr. Dig. 36, 197 (2004).CrossRefGoogle Scholar
  2. 2.
    E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard, D. Guyomar, J. Phys. IV 128, 177 (2005).Google Scholar
  3. 3.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007).CrossRefADSGoogle Scholar
  4. 4.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Scien. Technol. 17, R175 (2006).CrossRefGoogle Scholar
  5. 5.
    S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2012).CrossRefGoogle Scholar
  6. 6.
    R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013).CrossRefADSGoogle Scholar
  7. 7.
    M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, Appl. Mech. Rev. 66, 040801 (2014).CrossRefADSGoogle Scholar
  8. 8.
    F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009).CrossRefADSGoogle Scholar
  9. 9.
    L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94, 164102 (2009).CrossRefADSGoogle Scholar
  10. 10.
    B.P. Mann, B.A. Owens, J. Sound Vibr. 329, 1215 (2010).CrossRefADSGoogle Scholar
  11. 11.
    R. Ramlan, M.J. Brennan, B.R. Mace, I. Kovacic, Nonlinear Dyn. 59, 545 (2010).CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Ferrari, V. Ferrari, M. Guizzetti, B. Ando, S. Baglio, C. Trigona, Sens. Actuators A: Phys. 162, 425 (2010).CrossRefGoogle Scholar
  13. 13.
    D.D. Quinn, A.L. Triplett, L.A. Bergman, A.F. Vakakis, J. Vibr. Acoust. 133, 011001 (2011).CrossRefGoogle Scholar
  14. 14.
    R. Masana, M.F. Daqaq, J. Sound Vibrat. 330, 6036 (2011).CrossRefADSGoogle Scholar
  15. 15.
    G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mater. Struct. 20, 102001 (2011).CrossRefADSGoogle Scholar
  16. 16.
    A. Erturk, D.J. Inman, J. Sound Vibrat. 330, 2339 (2011).CrossRefADSGoogle Scholar
  17. 17.
    D.A.W. Barton, S.G. Burrow, L.R. Clare, J. Vibrat. Acoust. 132, 021009 (2010).CrossRefGoogle Scholar
  18. 18.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010).CrossRefADSGoogle Scholar
  19. 19.
    S.F. Ali, S. Adhikari, M.I. Friswell, S. Narayanan, J. Appl. Phys. 109, 074904 (2011).CrossRefADSGoogle Scholar
  20. 20.
    C. McInnes, D. Gorman, M.P. Cartmell, J. Sound Vibrat. 318, 655 (2008).CrossRefADSGoogle Scholar
  21. 21.
    C.A.K. Kwuimy, G. Litak, M. Borowiec, C. Nataraj, Appl. Phys. Lett. 100, 024103 (2012).CrossRefADSGoogle Scholar
  22. 22.
    W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. ST 222, 1665 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Cao, S. Zhou, D.J. Inman, Y. Chen, Nonlinear Dyn. 80, 1705 (2015).CrossRefGoogle Scholar
  24. 24.
    C.A.K. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Syta, C.R. Bowen, H.A. Kim, A. Rysak, G. Litak, Meccanica (2015), DOI:10.1007/s11012-015-0140-1.
  26. 26.
    Y.Q. Chen, K.L. Moore, IEEE Trans. Circ. Syst. 49, 363 (2002).CrossRefMathSciNetGoogle Scholar
  27. 27.
    C. Ma, Y. Hori, Nonlinear Dyn. 38, 171 (2004).CrossRefzbMATHGoogle Scholar
  28. 28.
    J.A.T. Machado, Commun. Nonlinear Sci. Numer. Simulat. 14, 3492 (2009).CrossRefADSGoogle Scholar
  29. 29.
    C. Onat, M. Sahin, Y. Yaman, Aircr. Eng. Aerosp. Technol. 84, 203 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Borowiec, A. Rysak, D.H. Betts, C.R. Bowen, H.A. Kim, G. Litak, Eur. Phys. J. Plus 129, 211 (2014).CrossRefGoogle Scholar
  31. 31.
    M. Costa, A.L. Goldberger, C.-K. Peng, Phys. Rev. Lett. 89, 68102 (2002).CrossRefADSGoogle Scholar
  32. 32.
    R.A. Thuraisingham, G.A. Gottwald, Physica A 366, 323 (2006).CrossRefADSGoogle Scholar
  33. 33.
    S.-D. Wu, C.-W. Wu, S.-G. Lin, C.-C. Wang, K.-Y. Lee, Entropy 15, 1069 (2013).CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    M. Costa, C.-K. Peng, A.L. Goldberger, J.M. Hausdorff, Physica A 330, 53 (2003).CrossRefADSzbMATHGoogle Scholar
  35. 35.
    J.S. Richman, J.R. Moorman, Am. J. Physiol. 278, H2039 (2000).Google Scholar
  36. 36.
    G.A. Gottwald, I. Melbourne, Proc. R. Soc. London A 460, 603 (2004).CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    G.A. Gottwald, I. Melbourne, Physica D 212, 100 (2005).CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985).CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. 39.
    G. Litak, A. Syta, M. Wiercigroch, Chaos Solitons Fractals 40, 2095 (2009).CrossRefADSGoogle Scholar
  40. 40.
    G.A. Gottwald, I. Melbourne, SIAM J. Appl. Dyn. Syst. 8, 129 (2009).CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    G.A. Gottwald, I. Melbourne, Nonlinearity 22, 1367 (2009).CrossRefADSzbMATHMathSciNetGoogle Scholar
  42. 42.
    G. Litak, S. Schubert, G. Radons, Nonlinear Dyn. 69, 1255 (2012).CrossRefMathSciNetGoogle Scholar
  43. 43.
    B. Krese, E. Govekar, Nonlinear Dyn. 67, 2101 (2012).CrossRefGoogle Scholar
  44. 44.
    G. Litak, D. Bernardini, A. Syta, G. Rega, A. Rysak, Eur. Phys. J. ST 222, 1637 (2013).CrossRefGoogle Scholar
  45. 45.
    H. Kantz, T. Schreiber, Non-linear Time Series Analysis (Cambridge University Press, Cambridge, 1977).Google Scholar
  46. 46.
    I. Melbourne, G.A. Gottwald, Nonlinearity 21, 179 (2008).CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Junyi Cao
    • 1
  • Arkadiusz Syta
    • 2
  • Grzegorz Litak
    • 2
    • 3
    Email author
  • Shengxi Zhou
    • 1
  • Daniel J. Inman
    • 4
  • Yangquan Chen
    • 5
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland
  3. 3.Laboratoire de Génie Electrique et FerroélectricitéInstitut National des Sciences Appliquées de LyonVilleurbanne cedexFrance
  4. 4.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  5. 5.School of EngineeringUniversity of CaliforniaMercedUSA

Personalised recommendations