Skip to main content
Log in

Analyzing the parton densities and constructing the xF3 structure function, using the Laguerre polynomials expansion and Monte Carlo calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the neutrino-nucleon scattering to analyse the xF 3 structure function. We solve first numerically the DGLAP evolution equation, using the Laguerre polynomials expansion and Monte Carlo calculations. What we get for the evolved parton densities is in good agreement with the fitting GRSV and CETQ parameterizations. We then construct the xF 3 structure function in the Bjorken x-space using the Laguerre polynomials expansion while we achieve this structure function initially in the Mellin moment space. The relations which convert the structure function from the Mellin moment space to the Bjorken x-space, using the Laguerre polynomials, are introduced for the first time in this article. These relations enable us to do the fitting and extract the QCD cut-off parameter which is in good agreement with what is expected. To confirm the calculation we reconstruct the xF 3 structure function directly in Bjorken x-space using the evolved parton densities which are obtained, themselves, based on the Laguerre expansion. At this stage, to get the evolved parton densities, we employ the QCD cut-off parameter which we get from the fitting. The results for the xF 3 structure function, using the two different described methods, are in good agreement with each other and also with the available experimental data which confirms the validity of our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969).

    Article  ADS  Google Scholar 

  2. M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).

    Article  ADS  Google Scholar 

  3. L.F. Abbott et al., Phys. Rev. D 22, 582 (1980).

    Article  ADS  Google Scholar 

  4. J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  5. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  6. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  7. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  8. W. Furmanski, R. Petroznio, Nucl. Phys. B 195, 237 (1982).

    Article  ADS  Google Scholar 

  9. W. Furmanski, R. Petronzio, Z. Phys. C 11, 293 (1982).

    Article  ADS  Google Scholar 

  10. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge University Press, 1996).

  11. C. Coriano, C. Savkli, Comput. Phys. Commun. 118, 236 (1999).

    Article  ADS  MATH  Google Scholar 

  12. H.L. Lai et al., Phys. Rev. D 55, 1280 (1997).

    Article  ADS  Google Scholar 

  13. M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998).

    Article  ADS  Google Scholar 

  14. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 90 (Cambridge University Press, 1996).

  15. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Elsevier Academic Press, 2005).

  16. A. Ghasempour Nesheli, A. Mirjalili, M.M. Yazdanpanah, submitted to Int. J. Comput. Methods (World Scientific).

  17. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. Vogt, Comput. Phys. Commun. 170, 65 (2005).

    Article  ADS  Google Scholar 

  19. Ali.N. Khorramian, S. Atashbar Tehrani, JHEP 03, 051 (2007).

    Article  ADS  Google Scholar 

  20. CCFR Collaboration (W. Seligman et al.), Phys. Rev. Lett. 79, 1213 (1997).

    Article  Google Scholar 

  21. CHORUS Collaboration, Phys. Lett. B 632, 65 (2006).

    Article  ADS  Google Scholar 

  22. A.L. Kataev, A.V. Kotikov, G. Parente, A.V. Sidorov, Phys. Lett. B 417, 374 (1998).

    Article  ADS  Google Scholar 

  23. S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 573, 853 (2000).

    Article  ADS  Google Scholar 

  24. M. Glück, E. Reya, A. Vogt: Z. Phys. C 48, 471 (1990).

    Google Scholar 

  25. A. Mirjalili, K. Keshavarzian, Int. J. Mod. Phys. A 22, 4519 (2007).

    Article  ADS  Google Scholar 

  26. A.L. Kataev, G. Parente, A.V. Sidorov, Phys. Part. Nucl. 34, 20 (2003).

    Google Scholar 

  27. M.M. Yazdanpanah, A. Mirjalili, S. Atashbar Tehrani, F. Taghavi-Shahri, Nucl. Phys. A 831, 243 (2009).

    Article  ADS  Google Scholar 

  28. C.J. Maxwell, A. Mirjalili, Nucl. Phys. B 645, 298 (2002).

    Article  ADS  Google Scholar 

  29. L. Schoffel, Nucl. Instrum. Methods 423, 439 (1999).

    Article  ADS  Google Scholar 

  30. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997).

    Article  ADS  Google Scholar 

  31. German Rodrigo, Antonio Pich, Arcadi Santamaria, Phys. Lett. B 424, 367 (1998).

    Article  ADS  Google Scholar 

  32. J. Blumlein, A. Vogt, Phys. Rev. D 58, 014020 (1998).

    Article  ADS  Google Scholar 

  33. W.L.V. Neerven, A. Vogt, Nucl. Phys. B 568, 263 (2000).

    Article  ADS  Google Scholar 

  34. W. Greiner, S. Scharmm, E. Stein, Quantum Chromodynamics (Spinger, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mirjalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasempour Nesheli, A., Mirjalili, A. & Yazdanpanah, M.M. Analyzing the parton densities and constructing the xF3 structure function, using the Laguerre polynomials expansion and Monte Carlo calculations. Eur. Phys. J. Plus 130, 82 (2015). https://doi.org/10.1140/epjp/i2015-15082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15082-8

Keywords

Navigation