Skip to main content
Log in

Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the electrical behavior of the Al/SiO2/Si MOS structure. We have used the complex admittance method to develop an analytical model of total capacitance applied to our proposed equivalent circuit. The charge density, surface potential, semiconductor capacitance, flatband and threshold voltages have been determined by resolving the Poisson transport equations. This modeling is used to predict in particular the effects of frequency, parallel and series resistance on the capacitance-voltage characteristic. Results show that the variation of both frequency and parallel resistance causes strong dispersion of the C-V curves in the inversion regime. It also reveals that the series resistance influences the shape of C-V curves essentially in accumulation and inversion modes. A significant decrease of the accumulation capacitance is observed when R s increases in the range 200–50000 Ω. The degradation of the C-V magnitude is found to be more pronounced when the series resistance depends on the substrate doping density. When R s varies in the range 100 Ω–50 kΩ, it shows a decrease in the flatband voltage from −1.40 to −1.26 V and an increase in the threshold voltage negatively from −0.28 to −0.74 V, respectively. Good agreement has been observed between simulated and measured C-V curves obtained at high frequency. This study is necessary to control the adverse effects that disrupt the operation of the MOS structure in different regimes and optimizes the efficiency of such electronic device before manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chakraborty, D. Misra, Int. J. Sci. Res. Publ. 3, 1 (2013).

    Google Scholar 

  2. Yu.A. Chaplygin, E.A. Artamonova, A.Yu. Krasyukov, TYu. Krupkina, Semiconductors 42, 1522 (2008).

    Article  ADS  Google Scholar 

  3. F.M. d'Heurle, M.O. Aboelfotoh, F. Pesavento, C.S. Petersson, Appl. Surf. Sci. 53, 237 (1991).

    Article  ADS  Google Scholar 

  4. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Willey Interscience Publication, USA, 1982).

  5. U. Kelberlau, R. Kassinc, Solid-State Electronic 37, 22 (1978).

    Google Scholar 

  6. J.R. Hauser, K. Ahmed, AIP Conf. Proc. 235, 449 (1998).

    Google Scholar 

  7. C.C. Cheng, C.H. Chien, G.L. Luo, J.C. Liu, Y.C. Chen, Y.F. Chang, S.Y. Wang, C.C. Kei, C.N. Hsiao, C.Y. Chang, J. Vacuum Sci. Technol. B 27, 130 (2009).

    Article  ADS  Google Scholar 

  8. J.A. Luna-Lopez, M. Aceves-Mijares, O. Malik, R. Glanzer, INAOE Rev. Mexicana Fis. 45, 52 (2005).

    Google Scholar 

  9. J.A. Luna-López, M. Aceves-Mijares, O. Malik, Soc. Mexicana Ciencia Superficies Vacío 17, 1 (2004).

    Google Scholar 

  10. P. Fernández-Martínez, F.R. Palomo, S. Hidalgo, C. Fleta, F. Campabadal, D. Flores, Nucl. Instrum. Methods Phys. Res. A 5, 108 (2013).

    Google Scholar 

  11. B. Rong, L.K. Nanver, J.N. Burghartz, A.B.M. Jansman, A.G.R. Evans, B.S. Rejaeia, C-V characterization of MOS capacitors on high resistivity silicon substrate, in 33rd Conference on European Solid-State Device Research, ESSDERC'03 (IEEE, 2003) pp. 489--492, DOI:10.1109/ESSDERC.2003.1256920.

  12. C.Y. Kim, H.S. Lee, J.K. Woo, C.K. Cho, R. Navamathavan, K.M. Lee, M.T. Hyun, J. Kor. Phys. Soc. 57, 1976 (2010).

    Article  Google Scholar 

  13. B. Tataroğlu, S. Altindal, A. Tataroğlu, Microelectron. Eng. 83, 2021 (2006).

    Article  Google Scholar 

  14. T.W. Collins, I.N. Churchill, IEEE Electron. Dev. 22, 90 (1975).

    Article  Google Scholar 

  15. Nicollian A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965).

    Article  ADS  Google Scholar 

  16. H. Mathieu, Physique de Semi-Conducteurs et des Composantes Électroniques (Masson S.A., Paris, 1998).

  17. F. Chen, N.P. Hoilien, S.A. Campbell, Microelectron. Eng. 72, 160 (2004).

    Article  Google Scholar 

  18. C.T. Sah, A.B. Tole, R.F. Pierret, Solid-State Electron. 12, 689 (1969).

    Article  ADS  Google Scholar 

  19. S.S. Ullah, M. Robinson, J. Hoey, M.S. Driver, A. Caruso, D.L. Schulz, Semicond. Sci. Technol. 27, 065012 (2012).

    Article  ADS  Google Scholar 

  20. A. Tataroğlu, S. Altindal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005).

    Article  Google Scholar 

  21. W.K. Henson, K.Z. Ahmed, E.M. Vogel, J.R. Hauser, J.J. Wortman, R.D. Venables, M. Xu, D. Venables, IEEE Electron. Dev. Lett. 20, 179 (1999).

    Article  ADS  Google Scholar 

  22. A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Solid-State Electron. 8, 145 (1965).

    Article  ADS  Google Scholar 

  23. R.T. Doria, R. Trevisol, M. de Souza, M.A. Pavanello, J. Integr. Circuits Syst. 7, 121 (2012).

    Google Scholar 

  24. S. Altindal, H. Kanbur, I. Yücedağ, A. Tataroğlu, Microelectron. Eng. 85, 149 (2008).

    Article  Google Scholar 

  25. M. Depas, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 37, 433 (1994).

    Article  ADS  Google Scholar 

  26. K.J. Yang, C. Hu, IEEE Trans. Electron. Dev. 46, 1500 (1999).

    Article  ADS  Google Scholar 

  27. P.P. Altermatt, A. Schenk, B. Schmithüsen, G. Heiser, J. Appl. Phys. 100, 113715 (2006).

    Article  ADS  Google Scholar 

  28. S. Altindal, A. Tataroğlu, I. Dökme, Solar Energy Mater. Solar Cells 85, 345 (2005).

    Article  Google Scholar 

  29. S. Corosi, C. Plossu, S. Burignat, J. Mater. Sci.: Mater. Electron. 14, 311 (2003).

    Google Scholar 

  30. A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci.: Mater. Electron. 25, 3257 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rejaiba Omar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, R., Mohamed, B.A. & Adel, M. Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices. Eur. Phys. J. Plus 130, 80 (2015). https://doi.org/10.1140/epjp/i2015-15080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15080-x

Keywords

Navigation