Skip to main content
Log in

Dielectric relaxations investigation of a synthesized epoxy resin polymer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A diglycidylether of bisphenol A (DGEBA) epoxy resin was synthesized, and cured with 3,3′-diaminodiphenyl sulfone (DDS) at a curing temperature of 120 °C. The relaxation properties of the realized polymers were studied by two complementary techniques: dielectric relaxation spectroscopy (DRS), in the temperature range 173–393K and in the frequency interval 10−1–106 Hz, and thermally stimulated depolarization current (TSDC) with a windowing polarization process. Current-voltage (I–V) measurements were also carried out to study interfacial relaxations. Dielectric data were analyzed in terms of permittivity and electric modulus variations. Three relaxation processes (γ, β and α) have been identified. They were found to be frequency and temperature dependent and were interpreted in terms of the Havriliak-Negami approach. Relaxation parameters were determined by fitting the experimental data. The temperature dependence of the relaxation time was well fitted by the Arrhenius law for secondary relaxations, while the Vogel-Fulcher-Tamann model was found to better fit the τ(T) variations for α relaxation. We found τ 0 = 4.9 10−12 s, 9.6 10−13 s and 1.98 10−7 s for γ, β and α relaxations, respectively. The obtained results were found to be consistent with those reported in the literature. Due to the calculation of the low-frequency data of dielectric loss by the Hamon approximation, the Maxwell-Wagner-Sillars (MWS) relaxation was highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Z. Akbaş, H. Durmuş, G. Ahmetli, Ozean J. Appl. Sci. 2, 443 (2009).

    Google Scholar 

  2. G.M. Tsangaris, G.C. Psarras, A.J. Kontopoulos, J. Non-Cryst. Solids 131, 1164 (1991).

    Article  ADS  Google Scholar 

  3. G.C. Psarras, Composites Part A 37, 1545 (2006).

    Article  Google Scholar 

  4. P. Debye, Polar Molecules (Dover, New York, 1945).

  5. S. Havriliak, S. Negami, J. Polym. Sci. Part C: Polym. Symp. 14, 99 (1966).

    Article  Google Scholar 

  6. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  7. H. Vogel, Phys. Z 22, 645 (1921).

    Google Scholar 

  8. G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  9. R. Díaz-Calleja, M.J. Sanchis, C. Alvarez, E. Riande, J. Appl. Phys. 80, 1047 (1996).

    Article  ADS  Google Scholar 

  10. J. Belana, J.C. Cañadas, J.A. Diego, M. Mudarra, R. Díaz-Calleja, S. Friederichs, C. Jaïmes, M.J. Sanchis, Polym. Int. 46, 11 (1998).

    Article  Google Scholar 

  11. J. Van Turnhout, Thermally Stimulated Discharge of Polymer Electrets (Elsevier, Amsterdam, 1975).

  12. R. Chen, Y. Kirsh, Analysis of Thermally Stimulated Processes (Pergamon Press, London, 1981).

  13. B. Hilezer, J. Malecki, Electrets, Studies in Electrical and Electronical Engineering (Elsevier, Amesterdam, 1986).

  14. H. Smaoui, M. Arous, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 489, 429 (2010).

    Article  Google Scholar 

  15. M. Beiner, K.L. Ngai, Macromolecules 38, 7033 (2005).

    Article  ADS  Google Scholar 

  16. B.V. Hamon, An Approximate Method for Deducing Dielectric Loss Factor From Direct-Current Measurements, in Proceedings IEE (London, 1952) p. 151.

  17. H.S. Faruque, J. Mat. Sci. 30, 5210 (1995).

    Article  ADS  Google Scholar 

  18. M. Mudarra, J. Belana, J.C. Cañadas, J.A. Diego, Polymer 40, 2659 (1999).

    Article  Google Scholar 

  19. E. Zghal, F. Namouchi, H. Guermazi, Eur. Phys. J. Appl. Phys. 65, 31302 (2014).

    Article  ADS  Google Scholar 

  20. L. Zong, S. Zhou, R. Sun, L.C. Kempel, M.C. Hawley, J. Polym. Sci. Part B: Polym. Phys. 42, 2871 (2004).

    Article  ADS  Google Scholar 

  21. V. Raja, A.K. Sharma, V.V.R. Narasimha Rao, Mater. Lett. 58, 3242 (2004).

    Article  Google Scholar 

  22. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Express Polym. Lett. 1, 781 (2007).

    Article  Google Scholar 

  23. A. Soulintzis, G. Kontos, P. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, J. Polym. Sci. Part B: Polym. Phys. 47, 445 (2009).

    Article  ADS  Google Scholar 

  24. S. Pangrle, C.S. Wu, P.H. Geil, Polym. Compos. 10, 173 (1989).

    Article  Google Scholar 

  25. G.A. Pogany, Polymer 11, 66 (1970).

    Article  Google Scholar 

  26. R.G.C. Arridge, J.H. Speake, Polymer 13, 450 (1972).

    Article  Google Scholar 

  27. H. Hammami, M. Arous, M. Lagache, A. Kallel, J. Alloys Compd. 430, 1 (2007).

    Article  Google Scholar 

  28. E. Serrano, G. Kortaberria, P. Arruti, A. Tercjak, I. Mondragon, Eur. Polym. J. 45, 1046 (2009).

    Article  Google Scholar 

  29. H. Hammami, M. Arous, M. Lagache, A. Kallel, Composites Part A 37, 1 (2006).

    Article  Google Scholar 

  30. A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym. Sci. Part B: Polym. Phys. 33, 1737 (1995).

    Article  ADS  Google Scholar 

  31. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater Sci. 33, 2027 (1998).

    Article  ADS  Google Scholar 

  32. L. Nuñez, S. Gomez-Barreiro, C.A. Gracia-Fernandez, M.R. Nuñez, Polymer 45, 1167 (2004).

    Article  Google Scholar 

  33. H. Lu, X. Zhang, J. Macromol. Sci. Phys. 45, 933 (2006).

    Article  Google Scholar 

  34. H. Medhioub, C. Zerrouki, N. Fourati, H. Smaoui, H. Guermazi, J.J. Bonnet, J. Appl. Phys. 101, 1 (2007).

    Article  Google Scholar 

  35. P. Saxena, M.S. Gaur, J. Appl. Polym. Sci. 118, 3715 (2010).

    Article  Google Scholar 

  36. R.M. Neagu, E.R. Neagu, I.M. Kalogeras, A. Vassilikou-Dova, Mater. Res. Innovations 4, 115 (2001).

    Article  Google Scholar 

  37. G. Teyssedre, C. Lacabanne, J. Phys. D: Appl. Phys. 28, 1478 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissal Jilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilani, W., Mzabi, N., Gallot-Lavallée, O. et al. Dielectric relaxations investigation of a synthesized epoxy resin polymer. Eur. Phys. J. Plus 130, 76 (2015). https://doi.org/10.1140/epjp/i2015-15076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15076-6

Keywords

Navigation