The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility

  • Christoph Mueller-Dieckmann
  • Matthew W. Bowler
  • Philippe Carpentier
  • David Flot
  • Andrew A. McCarthy
  • Max H. Nanao
  • Didier Nurizzo
  • Petra Pernot
  • Alexander Popov
  • Adam Round
  • Antoine Royant
  • Daniele de Sanctis
  • David von Stetten
  • Gordon A. Leonard
Review
Part of the following topical collections:
  1. Focus Point on Status of third-generation synchrotron crystallography beamlines: An overview

Abstract

The European Synchrotron Radiation Facility (ESRF) is the oldest and most powerful 3rd generation synchrotron in Europe, providing X-rays to more than 40 experimental stations welcoming several thousand researchers per year. A major success story has been the ESRF's facilities for macromolecular crystallography (MX). These are grouped around 3 straight sections: On ID23 canted undulators accommodate ID23-1, a mini-focus tuneable energy end station and ID23-2, the world's first micro-focus beamline dedicated to MX; ID29 houses a single, mini-focus, tuneable energy end station; ID30 will provide three end stations for MX due in operation from mid-2014 to early 2015. Here, one branch of a canted X-ray source feeds two fixed-energy end stations (MASSIF-1, MASSIF-3). The second feeds ID30B, a variable focus, tuneable energy beamline. MASSIF-1 is optimised for automatic high-throughput experiments requiring a relatively large beam size at the sample position, MASSIF-3 is a high-intensity, micro-focus facility designed to complement ID23-2. All end stations are highly automated, equipped with sample mounting robots and large area, fast-readout photon-counting detectors. Experiment control and tracking is achieved via a combination of the MXCuBE2 graphical user interface and the ISPyB database, the former allowing user-friendly control of all beamline components, the latter providing data tracking before, after and during experiments.

References

  1. 1.
    J. Lescar et al., ESRF Newsletter 28, 12 (1997).Google Scholar
  2. 2.
    H. Belrhali et al., ESRF Newsletter 28, 15 (1997).Google Scholar
  3. 3.
    V. Biou et al., ESRF Newsletter 28, 21 (1997).Google Scholar
  4. 4.
    E. Pebay-Peyroula et al., Science 277, 1676 (1997).CrossRefGoogle Scholar
  5. 5.
    K. Luger et al., Nature 389, 251 (1997).CrossRefADSGoogle Scholar
  6. 6.
    H. Hope, Acta Crystallogr. B-Struct. Sci. 44, 22 (1988) DOI:10.1107/S0108768187008632.CrossRefGoogle Scholar
  7. 7.
    W.A. Hendrickson, C.M. Ogata, Macromol. Crystallogr. A 276, 494 (1997) DOI:10.1016/S0076-6879(97)76074-9.CrossRefGoogle Scholar
  8. 8.
    J.L. Smith, Curr. Opin. Struct. Biol. 1, 1002 (1991) DOI:10.1016/0959-440X(91)90098-E.CrossRefGoogle Scholar
  9. 9.
    S. Wakatsuki et al., J. Synchrotron Radiat. 5, 215 (1998) DOI:10.1107/S0909049597018785.CrossRefGoogle Scholar
  10. 10.
    D. de Sanctis et al., J. Synchrotron Radiat. 19, 455 (2012) DOI:10.1107/S0909049512009715.CrossRefGoogle Scholar
  11. 11.
    D. Nurizzo et al., J. Synchrotron Radiat. 13, 227 (2006) DOI:10.1107/S0909049506004341.CrossRefGoogle Scholar
  12. 12.
    D. Flot et al., J. Synchrotron Radiat. 17, 107 (2010) DOI:10.1107/S0909049509041168.CrossRefGoogle Scholar
  13. 13.
    A. Perrakis et al., Acta Crystallogr. Sect. D-Biol. Crystallogr. 55, 1765 (1999) DOI:10.1107/S0907444999009348.CrossRefGoogle Scholar
  14. 14.
    P. Theveneau et al., J. Phys.: Conf. Ser. 425, (2013) DOI:10.1088/1742-6596/425/1/012001.
  15. 15.
    P. Pernot et al., J. Synchrotron Radiat. 20, 660 (2013) DOI:10.1107/S0909049513010431.CrossRefGoogle Scholar
  16. 16.
    A. Round et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 67 (2015) DOI:10.1107/S1399004714026959.CrossRefGoogle Scholar
  17. 17.
    A. Round et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 2072 (2013) DOI:10.1107/S0907444913019276.CrossRefGoogle Scholar
  18. 18.
    A. De Maria Antolinos et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 76 (2015) DOI:10.1107/S1399004714019609.CrossRefGoogle Scholar
  19. 19.
    D. von Stetten et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 15 (2015) DOI:10.1107/S139900471401517X.CrossRefGoogle Scholar
  20. 20.
    S. Malbet-Monaco et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 1289 (2013) DOI:10.1107/S0907444913001108.CrossRefGoogle Scholar
  21. 21.
    H.M. Berman et al., Nucl. Acids Res. 28, 235 (2000) DOI:10.1093/Nar/28.1.235.CrossRefADSGoogle Scholar
  22. 22.
    E. Micossi, W.N. Hunter, G.A. Leonard, Acta Crystallogr. D-Biol. Crystallogr. 58, 21 (2002) DOI:10.1107/S0907444901016808.CrossRefGoogle Scholar
  23. 23.
    F. Cipriani et al., Acta Crystallogr. D-Biol. Crystallogr. 62, 1251 (2006) DOI:10.1107/S0907444906030587.CrossRefGoogle Scholar
  24. 24.
    T. Giraud et al., J. Appl. Crystallogr. 42, 125 (2009) DOI:10.1107/S0021889808040958.CrossRefGoogle Scholar
  25. 25.
    G.A. Leonard et al., J. Appl. Crystallogr. 42, 333 (2009) DOI:10.1107/S0021889809001721.CrossRefGoogle Scholar
  26. 26.
    J. Gabadinho et al., J. Synchrotron Radiat. 17, 700 (2010) DOI:10.1107/S0909049510020005.CrossRefGoogle Scholar
  27. 27.
    D. de Sanctis, G. Leonard, in Notiziario Neutroni e Luce di Sincrotrone Vol. 19 (Consiglio Nazionale delle Ricerche, 2014) p. 24.Google Scholar
  28. 28.
    S. Delageniere et al., Bioinformatics 27, 3186 (2011) DOI:10.1093/bioinformatics/btr535.CrossRefGoogle Scholar
  29. 29.
    M.W. Bowler et al., Acta Crystallogr. D-Biol. Crystallogr. 66, 855 (2010) DOI:10.1107/S0907444910019591.CrossRefGoogle Scholar
  30. 30.
    G.P. Bourenkov, A.N. Popov, Acta Crystallogr. D-Biol. Crystallogr. 66, 409 (2010) DOI:10.1107/S0907444909054961.CrossRefGoogle Scholar
  31. 31.
    J. Sanchez-Weatherby et al., Acta Crystallogr. D-Biol. Crystallogr. 65, 1237 (2009) DOI:10.1107/S0907444909037822.CrossRefGoogle Scholar
  32. 32.
    S. Brockhauser et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 1241 (2013) DOI:10.1107/S0907444913003880.CrossRefGoogle Scholar
  33. 33.
    S. Brockhauser et al., Acta Crystallogr. D-Biol. Crystallogr. 68, 975 (2012) DOI:10.1107/S090744491201863x.CrossRefGoogle Scholar
  34. 34.
    M.W. Bowler et al., Cryst. Growth Des. 15, 1043 (2015) DOI:10.1021/cg500890r.CrossRefGoogle Scholar
  35. 35.
    S. Russi et al., J. Struct. Biol. 175, 236 (2011) DOI:10.1016/j.jsb.2011.03.002.CrossRefGoogle Scholar
  36. 36.
    S. Monaco et al., J. Appl. Crystallogr. 46, 804 (2013) DOI:10.1107/S0021889813006195.CrossRefGoogle Scholar
  37. 37.
    W. Kabsch, Acta Crystallogr. D-Biol. Crystallogr. 66, 125 (2010) DOI:10.1107/S0907444909047337.CrossRefGoogle Scholar
  38. 38.
    T.G. Battye et al., Acta Crystallogr. D-Biol. Crystallogr. 67, 271 (2011) DOI:10.1107/S0907444910048675.CrossRefGoogle Scholar
  39. 39.
    M.D. Winn et al., Acta Crystallogr. D-Biol. Crystallogr. 67, 235 (2011) DOI:10.1107/S0907444910045749.CrossRefGoogle Scholar
  40. 40.
    P.D. Adams et al., Acta Crystallogr. D-Biol. Crystallogr. 66, 213 (2010) DOI:10.1107/S0907444909052925.CrossRefGoogle Scholar
  41. 41.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112 (2008) DOI:10.1107/S0108767307043930.CrossRefADSGoogle Scholar
  42. 42.
    P. van der Linden et al., J. Appl. Crystallogr. 47, 584 (2014) DOI:10.1107/S1600576714000855.CrossRefGoogle Scholar
  43. 43.
    A.A. McCarthy et al., J. Synchrotron Radiat. 16, 803 (2009) DOI:10.1107/S0909049509035377.CrossRefGoogle Scholar
  44. 44.
    C. Gati et al., IUCrJ 1, 87 (2014) DOI:10.1107/S2052252513033939.CrossRefGoogle Scholar
  45. 45.
    F. Stellato et al., IUCrJ 1, 204 (2014) DOI:10.1107/S2052252514010070.CrossRefGoogle Scholar
  46. 46.
    C. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006) DOI:10.1107/S0909049505038665.CrossRefGoogle Scholar
  47. 47.
    G. Hulsen et al., J. Appl. Crystallogr. 39, 550 (2006) DOI:10.1107/S0021889806016591.CrossRefGoogle Scholar
  48. 48.
    R. Giordano et al., Acta Crystallogr. D-Biol. Crystallogr. 68, 649 (2012) DOI:10.1107/S0907444912006841.CrossRefGoogle Scholar
  49. 49.
    J.L. Ferrer et al., Expert Opin. Drug Discov. 8, 835 (2013) DOI:10.1517/17460441.2013.793666.CrossRefGoogle Scholar
  50. 50.
    M.G. Bowler, M.W. Bowler, Acta Crystallogr. F 70, 127 (2014) DOI:10.1107/S2053230X13032007.CrossRefGoogle Scholar
  51. 51.
    G.A. Leonard et al., Acta Crystallogr. D-Biol. Crystallogr. 61, 388 (2005) DOI:10.1107/S0907444905000429.CrossRefGoogle Scholar
  52. 52.
    R.B.G. Ravelli et al., J. Synchrotron Radiat. 12, 276 (2005) DOI:10.1107/S0909049505003286.CrossRefGoogle Scholar
  53. 53.
    D. de Sanctis, M.H. Nanao, Acta Crystallogr. D-Biol. Crystallogr. 68, 1152 (2012) DOI:10.1107/S0907444912023475.CrossRefGoogle Scholar
  54. 54.
    J. Harms et al., Cell 107, 679 (2001) DOI:10.1016/S0092-8674(01)00546-3.CrossRefGoogle Scholar
  55. 55.
    B.T. Wimberly et al., Nature 407, 327 (2000).CrossRefADSGoogle Scholar
  56. 56.
    S.G.F. Rasmussen et al., Nature 450, 383 (2007) DOI:10.1038/Nature06325.CrossRefADSGoogle Scholar
  57. 57.
    T. Warne et al., Nature 454, 486 (2008) DOI:10.1038/Nature07101.CrossRefADSGoogle Scholar
  58. 58.
    R. Baradaran et al., Nature 494, 443 (2013) DOI:10.1038/Nature11871.CrossRefADSGoogle Scholar
  59. 59.
    A. Amunts et al., J. Biol. Chem. 285, 3478 (2010) DOI:10.1074/jbc.M109.072645.CrossRefGoogle Scholar
  60. 60.
    J.E. Burke et al., Science 344, 1035 (2014) DOI:10.1126/science.1253397.CrossRefADSGoogle Scholar
  61. 61.
    J. Fritsch et al., Nature 479, 249 (2011) DOI:10.1038/Nature10505.CrossRefADSGoogle Scholar
  62. 62.
    M. Elias et al., Nature 491, 134 (2012) DOI:10.1038/Nature11517.CrossRefADSGoogle Scholar
  63. 63.
    U.K. Eriksson et al., Science 340, 1346 (2013) DOI:10.1126/science.1234306.CrossRefADSGoogle Scholar
  64. 64.
    A.P. Carter et al., Nature 407, 340 (2000).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christoph Mueller-Dieckmann
    • 1
  • Matthew W. Bowler
    • 2
    • 3
  • Philippe Carpentier
    • 1
  • David Flot
    • 1
  • Andrew A. McCarthy
    • 2
    • 3
  • Max H. Nanao
    • 2
    • 3
  • Didier Nurizzo
    • 1
  • Petra Pernot
    • 1
  • Alexander Popov
    • 1
  • Adam Round
    • 2
    • 3
  • Antoine Royant
    • 1
    • 4
  • Daniele de Sanctis
    • 1
  • David von Stetten
    • 1
  • Gordon A. Leonard
    • 1
  1. 1.European Synchrotron Radiation FacilityStructural Biology GroupGrenoble Cedex 9France
  2. 2.EMBL Grenoble OutstationGrenoble Cedex 9France
  3. 3.Unit for Virus Host-Cell InteractionsUniversity of Grenoble Alpes-EMBL-CNRSGrenoble Cedex 9France
  4. 4.Institut de Biologie StructuraleGrenoble Cedex 9France

Personalised recommendations