Skip to main content

Advertisement

Log in

Does f(R,T) gravity admit a stationary scenario between dark energy and dark matter in its framework?

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this note we address the well-known cosmic coincidence problem in the framework of the f(R, T) gravity. In order to achieve this, an interaction between dark energy and dark matter is considered. A constraint equation is obtained which filters the f(R, T) models that produce a stationary scenario between dark energy and dark matter. Due to the absence of a universally accepted interaction term introduced by a fundamental theory, the study is conducted over three different forms of chosen interaction terms. As an illustration three widely known models of f(R, T) gravity are taken into consideration and used in the setup designed to study the problem. The study reveals that, the realization of the coincidence scenario is almost impossible for the popular models of f(R, T) gravity, thus proving to be a major setback for these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supernova Cosmology Project Collaboration (S. Perlmutter et al.), Astrophys. J. 517, 565 (1999).

    Article  Google Scholar 

  2. WMAP Collaboration (D.N. Spergel et al.), Astron. J. Suppl. 148, 175 (2003).

    Article  Google Scholar 

  3. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003).

    Article  ADS  Google Scholar 

  4. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).

    Article  ADS  Google Scholar 

  5. S.W. Allen et al., Mon. Not. R. Astron. Soc. 353, 457 (2004).

    Article  ADS  Google Scholar 

  6. Supernova Search Team Collaboration (A.G. Riess et al.), Astrophys. J. 607, 665 (2004).

    Article  Google Scholar 

  7. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  ADS  MATH  Google Scholar 

  8. V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003).

    Article  ADS  Google Scholar 

  9. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  10. R.R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  11. A. Joyce, B. Jain, J. Khoury, M. Trodden, arXiv:1407.0059v1 (2014).

  12. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, arXiv:1205.3421v3 (2012).

  13. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Y. Bisabr, Gen. Relativ. Gravit. 42, 1211 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. C. Rovelli, Living Rev. Relativ. 1, 1 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Ashtekar, J. Lewandowski, Class. Quantum Grav. 21, R53 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. P. Brax et al., Rep. Prog. Phys. 67, 2183 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Maartens, Phys. Rev. D 62, 084023 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Maartens, Living Rev. Relativ. 7, 7 (2004).

    Article  ADS  Google Scholar 

  20. R. Kerner, Gen. Relativ. Gravit. 14, 453 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Allemandi, A. Borowiec, M. Francaviglia, Phys. Rev. D 70, 103503 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  22. S.M. Carroll, A.D. Felice, V. Duvvuri, D.A. Easson, M. Trodden, M.S. Turner, Phys. Rev. D 71, 063513 (2005).

    Article  ADS  Google Scholar 

  23. E.V. Linder, Phys. Rev. D 81, 127301 (2010).

    Article  ADS  Google Scholar 

  24. M. Li, R.X. Miao, Y.G. Miao, JHEP 07, 108 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Miao, M. Li, Y. Miao, JCAP 11, 033 (2011).

    Article  ADS  Google Scholar 

  26. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011).

    Article  ADS  Google Scholar 

  27. S. Capozziello, M. De Laurentis, arXiv:1108.6266 (2011).

  28. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  29. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011).

    Article  ADS  Google Scholar 

  31. Y. Bisabr, Phys. Lett. B 683, 96 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  32. Q.G. Jun, Int. J. Mod. Phys. D 23, 1450036 (2014).

    Google Scholar 

  33. C.P.L. Berry, J.R. Gair, Phys. Rev. D 83, 104022 (2011).

    Article  ADS  Google Scholar 

  34. Y. Xie, X.M. Deng, Mon. Not. R. Astron. Soc. 433, 3584 (2013).

    Article  ADS  Google Scholar 

  35. L. Iorio, E.N. Saridakis, Mon. Not. R. Astron. Soc. 427, 1555 (2012).

    Article  ADS  Google Scholar 

  36. M. Sharif, M. Zubair, JCAP 03, 028 (2012).

    Article  ADS  Google Scholar 

  37. F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, J.B. Chabi Orou, J. Mod. Phys. 04, 130 (2013).

    Article  Google Scholar 

  38. M. Sharif, M. Zubair, Astrophys. Space Sci. 349, 457 (2014).

    Article  ADS  Google Scholar 

  39. M. Jamil, D. Momeni, M. Raza, R. Myrzakulov, Eur. Phys. J. C 72, 1999 (2012).

    Article  ADS  Google Scholar 

  40. Y. Bisabr, Phys. Rev. D 82, 124041 (2010).

    Article  ADS  Google Scholar 

  41. P. Rudra, Int. J. Mod. Phys. D 24, 1550013 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Rudra, arXiv:1410.6710[gr-qc] (2014).

  43. P. Huang, Y.-C. Huang, Int. J. Mod. Phys. D 22, 1350039 (2013).

    Article  ADS  Google Scholar 

  44. S. del Campo, R. Herrera, D. Pavon, JCAP 01, 020 (2009).

    Article  Google Scholar 

  45. M.S. Berger, H. Shojaei, Phys. Rev. D 73, 083528 (2006).

    Article  ADS  Google Scholar 

  46. P. Rudra, R. Biswas, U. Debnath, Astrophys. Space Sci. 339, 53 (2012).

    Article  ADS  MATH  Google Scholar 

  47. M. Jamil, U. Debnath, Astrophys. Space Sci. 333, 3 (2011).

    Article  ADS  Google Scholar 

  48. Y.G. Gong, A. Wang, Phys. Rev. D 73, 083506 (2006).

    Article  ADS  Google Scholar 

  49. Y.G. Gong, A. Wang, Phys. Rev. D 75, 043520 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  50. I. Zlatev, L. Wang, P.J. Steinhardt, L. Amendola, Phys. Rev. D 62, 043511 (2000).

    Article  Google Scholar 

  51. H. Wei, R.G. Cai, Phys. Rev. D 71, 043504 (2005).

    Article  ADS  Google Scholar 

  52. G. Yang, A. Wang, Gen. Relativ. Gravit. 37, 2201 (2005).

    Article  ADS  MATH  Google Scholar 

  53. H. Shabani, M. Farhoudi, Phys. Rev. D 90, 044031 (2014).

    Article  ADS  Google Scholar 

  54. S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008).

    Article  ADS  MATH  Google Scholar 

  55. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010).

    Article  ADS  Google Scholar 

  56. H.-J. Schmidt, Phys. Rev. D 83, 083513 (2011).

    Article  ADS  Google Scholar 

  57. M. Sharif, S. Rani, R. Myrzakulov, Eur. Phys. J. Plus 128, 123 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Rudra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudra, P. Does f(R,T) gravity admit a stationary scenario between dark energy and dark matter in its framework?. Eur. Phys. J. Plus 130, 66 (2015). https://doi.org/10.1140/epjp/i2015-15066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15066-8

Keywords

Navigation