Osmotic stress affects functional properties of human melanoma cell lines

Abstract

Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, C.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger et al., Cancer Cell 8, 241 (2005).

    Article  Google Scholar 

  2. 2.

    F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan, T. Risler, B. Cabane, D. Vignjevic, J. Prost, G. Cappello et al., Phys. Rev. Lett. 107, 188102 (2011).

    Article  ADS  Google Scholar 

  3. 3.

    F. Montel, M. Delarue, J. Elgeti, D. Vignjevic, G. Cappello, J. Prost, New J. Phys. 14, 055008 (2012).

    Article  ADS  Google Scholar 

  4. 4.

    A. Taloni, A.A. Alemi, E. Ciusani, J.P. Sethna, S. Zapperi, C.A.M. La Porta, PLoS One 9, e94229 (2014).

    Article  ADS  Google Scholar 

  5. 5.

    B. Racz, D. Reglodi, B. Fodor, B. Gasz, A. Lubics, F. Gallyas Jr., E. Roth, B. Borsiczky, Bone 40, 1536 (2007).

    Article  Google Scholar 

  6. 6.

    M.B. Nielsen, S.T. Christensen, E.K. Hoffmann, Am. J. Physiol. Cell Physiol. 294, C1046 (2008).

    Article  Google Scholar 

  7. 7.

    J.M. Tse, G. Cheng, J.A. Tyrrell, S.A. Wilcox-Adelman, Y. Boucher, R.K. Jain, L.L. Munn, Proc. Natl. Acad. Sci. U.S.A. 109, 911 (2012).

    Article  ADS  Google Scholar 

  8. 8.

    D. Fukumura, R.K. Jain, J. Cell. Biochem. 101, 937 (2007).

    Article  Google Scholar 

  9. 9.

    T.G. Simonsen, J.V. Gaustad, M.N. Leinaas, E.K. Rofstad, PLoS One 7, e40006 (2012).

    Article  ADS  Google Scholar 

  10. 10.

    M. Wu, H.B. Frieboes, S.R. McDougall, M.A.J. Chaplain, V. Cristini, J. Lowengrub, J. Theor. Biol. 320, 131 (2013).

    Article  MathSciNet  Google Scholar 

  11. 11.

    M. Welter, H. Rieger, PLoS ONE 8, e70395 (2013).

    Article  ADS  Google Scholar 

  12. 12.

    O. Bounedjah, L. Hamon, P. Savarin, B. Desforges, P.A. Curmi, D. Pastré, J. Biol. Chem. 287, 2446 (2012).

    Article  Google Scholar 

  13. 13.

    Z. Ignatova, L.M. Gierasch, Proc. Natl. Acad. Sci. U.S.A. 103, 13357 (2006).

    Article  ADS  Google Scholar 

  14. 14.

    M. Ben Amar, Eur. Phys. J. E 36, 64 (2013).

    Article  ADS  Google Scholar 

  15. 15.

    M. Ben Amar, M. Wu, J. R. Soc. Interface 11, 20131038 (2014).

    Article  Google Scholar 

  16. 16.

    C. Bernard, Introduction à l’étude de la médecine expérimentale (Paris, 1865).

  17. 17.

    A.C. Callan-Jones, J.F. Joanny, J. Prost, Phys. Rev. Lett. 100, 258106 (2008).

    Article  ADS  Google Scholar 

  18. 18.

    L. Patterson, J. Fluid Mech. 113, 513 (1981).

    Article  ADS  Google Scholar 

  19. 19.

    M.B. Amar, J. Phys. I France 2, 353 (1993).

    Article  Google Scholar 

  20. 20.

    G.T. Eisenhoffer, P.D. Loftus, M. Yoshigi, H. Otsuna, C.B. Chien, P.A. Morcos, J. Rosenblatt, Nature 484, 546 (2012).

    Article  ADS  Google Scholar 

  21. 21.

    D.T. Gillespie, J. Comput. Phys. 22, 403 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  22. 22.

    A.D. Acevedo, S.S. Bowser, M.E. Gerritsen, R. Bizios, J. Cell Physiol. 157, 603 (1993).

    Article  Google Scholar 

  23. 23.

    S.A. Salwen, D.H. Szarowski, J.N. Turner, R. Bizios, Med. Biol. Eng. Comput. 36, 520 (1998).

    Article  Google Scholar 

  24. 24.

    Y. Boucher, J.M. Kirkwood, D. Opacic, M. Desantis, R.K. Jain, Cancer Res. 51, 6691 (1991).

    Google Scholar 

  25. 25.

    E.K. Rofstad, S.H. Tunheim, B. Mathiesen, B.A. Graff, E.F. Halsør, K. Nilsen, K. Galappathi, Cancer Res. 62, 661 (2002).

    Google Scholar 

  26. 26.

    C. Bonnet-Gonnet, L. Belloni, B. Cabane, Langmuir 10, 4012 (1994).

    Article  Google Scholar 

  27. 27.

    R. Taghizadeh, M. Noh, Y.H. Huh, E. Ciusani, L. Sigalotti, M. Maio, B. Arosio, M.R. Nicotra, P. Natali, J.L. Sherley et al., PLoS One 5, e15183 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martine Ben Amar.

Additional information

Contribution to the Focus Point on “The Physics of Cancer” edited by M. Ben Amar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

La Porta, C.A.M., Ghilardi, A., Pasini, M. et al. Osmotic stress affects functional properties of human melanoma cell lines. Eur. Phys. J. Plus 130, 64 (2015). https://doi.org/10.1140/epjp/i2015-15064-x

Download citation

Keywords

  • Osmotic Pressure
  • Human Melanoma Cell
  • Front Velocity
  • Transwell Assay
  • Cell Front