Skip to main content
Log in

Ab initio study of vibrational and optical properties of stable ZnmOn(m + n = 2 to 5) nanoclusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An ab initio study has been performed for the various properties of the most stable configuration out of the various configurations having “m ” number of Zn and “n ” number of O atoms i.e. Zn m O n (m + n = 2 to 5) nanoclusters by employing B3LYP-DFT/6-311G(3df) method. We report here the vibrational frequencies, IR intensities, Rel IR intensities, Raman scattering activities and optical absorption for these nanoclusters. The structure having minimum energy out of all the configurations having similar values of “m ” and “n ” is considered as the most stable. We found that all the different configurations of ZnO4, Zn2O3 and Zn4O complexes are not stable because they possess at least one vibrational frequency which is imaginary. The high vibrational frequencies of each nanocluster arise from the symmetrical and asymmetrical stretching vibrations whereas the lower frequencies belong to the wagging, rocking and the out-of-plane vibrations of Zn and O atoms. Our predicated results for the most intense minimum excitation energies of the ZnO and Zn2O2 nanoclusters exhibit excellent agreement with the available experimental data. All the nanoclusters show strong absorption in the ultraviolet region but some also exhibit weak absorption in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Bernstien (Editor), Atomic and Molecular Clusters Studies in Physical and Theoretical Chemistry, Vol. 68 (Elsevier, Amsterdam, 1990).

  2. P. Jena, B.K. Rao, S.N. Khanna, Physics and Chemistry of Small Clusters, NATO ASI Ser., Vol. 158, (Kluwer, Dordrecht, 1990).

  3. H.J. Himmel, N. Hebben, Chem. Eur. J. 11, 4096 (2005).

    Article  Google Scholar 

  4. S.M. Sheehan, G. Meloni, B.F. Parsons, N. Wehres, D.M. Neumark, J. Chem. Phys. 124, 064303 (2006).

    Article  ADS  Google Scholar 

  5. Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).

    Article  Google Scholar 

  6. Z.L. Wang, Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  7. Z.K. Tang, G.K.L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  ADS  Google Scholar 

  8. J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W. Kim, Adv. Funct. Mater. 15, 1911 (2003).

    Article  Google Scholar 

  9. H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  10. Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003).

    Article  Google Scholar 

  11. S. Saito, M. Miyayama, K. Koumoto, J. Am. Ceram. Soc. 68, 40 (1985).

    Article  Google Scholar 

  12. S.J. Pearton, D.P. Norton, K. Ip, Y.W. He, T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  Google Scholar 

  13. B.S. Jeon, J.S. Yoo, J.D. Lee, J. Electrochem. Soc. 143, 3923 (1996).

    Article  Google Scholar 

  14. P.L. Hower, T.K. Gupta, J. Appl. Phys. 50, 4847 (1979).

    Article  ADS  Google Scholar 

  15. W.G. Morris, J. Vac. Sci. Technol. 13, 926 (1976).

    Article  ADS  Google Scholar 

  16. Z.L. Wang, J. Phys. Condens. Matter 16, 829 (2004).

    Article  ADS  Google Scholar 

  17. Z.L. Wang, J. Song, Science 312, 242 (2006).

    Article  ADS  Google Scholar 

  18. J. Antony, X.B. Chen, J. Morrison, L. Bergman, Y. Qiang, Appl. Phys. Lett. 87, 241917 (2005).

    Article  ADS  Google Scholar 

  19. K.S. Choi, H.C. Lichtenegger, G.D. Stucky, J. Am. Chem. Soc. 124, 12402 (2002).

    Article  Google Scholar 

  20. S. Maensiri, P. Laokul, V. Promarak, J. Cryst. Growth 289, 102 (2006).

    Article  ADS  Google Scholar 

  21. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, Mater. Lett. 60, 1828 (2006).

    Article  Google Scholar 

  22. M. Li., H. Bala, X. Lv, X. Ma, F. Sun, L. Tang, Z. Wang, Mater. Lett. 61, 690 (2007).

    Article  Google Scholar 

  23. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186 (1999).

    Article  ADS  Google Scholar 

  24. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurisic, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110, 20865 (2006).

    Article  Google Scholar 

  25. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005).

    Article  Google Scholar 

  26. Z.L. Wang, J. Phys.: Condens. Matter 16, 829 (2004).

    ADS  Google Scholar 

  27. D. Cannavo, G. Knopp, P. Radi, P. Beaud, M. Tulej, P. Bodek, T. Gerber, A. Wokaun, J. Mol. Struct. 782, 67 (2006).

    Article  ADS  Google Scholar 

  28. A. Burnin, J.J. BelBruno, Chem. Phys. Lett. 362, 341 (2002).

    Article  ADS  Google Scholar 

  29. A.V. Bulgakov, I. Ozerov, W. Marine, Laser ablation synthesis of zinc oxide clusters: a new family of fullerenes? arXiv:physics/0311117 (2003).

  30. L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Appl. Phys. A: Mater. Sci. Process 78, 641 (2004).

    Article  ADS  Google Scholar 

  31. A. Dmitruk, I. Dmitruk, I. Blonsky, R. Belosludov, Y. Kawazoe, A. Kasuya, Microele. J. 40, 218 (2009).

    Article  Google Scholar 

  32. J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, J. Am. Chem. Soc. 125, 9494 (2003).

    Article  Google Scholar 

  33. S. Wu, N. Yuan, H. Xu, X. Wang, Z.A. Schelly, Nanotechnology 17, 4713 (2006).

    Article  Google Scholar 

  34. Gaussian, Inc. (2003) GAUSSIAN 03, Revision C.03 (Pittsburgh, PA: Gaussian).

  35. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  36. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  37. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 371, 785 (1988).

    Article  ADS  Google Scholar 

  38. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989).

    Article  ADS  Google Scholar 

  39. B. Wang, S. Nagas, J. Zhao, G. Wang, J. Phys. Chem. C 111, 4956 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.S., Pandey, D.K., Agrawal, S. et al. Ab initio study of vibrational and optical properties of stable ZnmOn(m + n = 2 to 5) nanoclusters. Eur. Phys. J. Plus 130, 60 (2015). https://doi.org/10.1140/epjp/i2015-15060-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15060-2

Keywords

Navigation